Loading...
HomeMy WebLinkAbout20250121_NOI_CCS_Part 6_Part1 Attachment H Stormwater Management Report and Checklist (prepared by Burns & McDonnell) NSTAR ELECTRIC COMPANY D/B/A E VERSOURCE ENERGY STORMWATER M ANAGEMENT STUDY WEST BARNSTABLE STATION EXPANSION PROJECT NO. 152841 R EVISION 3 JANUARY 6, 2025 CONTENTS 1.0 Project Overview .................................................................................................... 1-1 1.1 Location & Project Description ................................................................................ 1-1 1.2 Floodplain................................................................................................................. 1-1 1.3 Soils .......................................................................................................................... 1-1 1.4 Pre-Development Site Conditions ............................................................................ 1-2 1.5 Post-Development Site Conditions .......................................................................... 1-2 2.0 MassDEP Stormwater Standards Compliance........................................................ 2-1 2.1 Rainfall Data ............................................................................................................. 2-1 2.2 Runoff Data .............................................................................................................. 2-1 2.3 Standard 1 – No New Untreated Stormwater Discharges ....................................... 2-2 2.4 Standard 2 – Post-Development Peak Discharge Rates ........................................... 2-2 2.5 Standard 3 – Recharge to Groundwater .................................................................. 2-4 2.6 Standard 4 – Water Quality Treatment ................................................................... 2-4 2.7 Standard 5 – Land Uses with Higher Pollutant Loading ........................................... 2-5 2.8 Standard 6 – Discharges to Critical Areas ................................................................ 2-5 2.9 Standard 7 – Redevelopment .................................................................................. 2-5 2.10 Standard 8 – Erosion and Sediment Controls .......................................................... 2-5 2.11 Standard 9 – Long Term Operation and Maintenance Plan .................................... 2-5 2.12 Standard 10 – Illicit Discharges ................................................................................ 2-5 3.0 Conclusion .............................................................................................................. 3-1 APPENDIX A – SITE LOCATION MAP APPENDIX B – FEMA FIRM APPENDIX C – SOIL DATA APPENDIX D – WATERSHED MAPS APPENDIX E – HYDROLOGIC CALCULATIONS APPENDIX F – WQV & RECHARGE CALCULATIONS APPENDIX G – EROSION CONTROL PLAN & DETAILS APPENDIX H – OPERATIONS & MAINTENANCE PLAN APPENDIX I – MASSDEP STORMWATER CHECKLIST APPENDIX J – ILLICIT DISCHARGE COMPLIANCE STATEMENT TABLES Table 1-1: NRCS Soil Types ........................................................................................................ 1-1 Table 2-1: Type-III Design Storm Frequency-Depth .................................................................. 2-1 Table 2-2: Standard Runoff Curve Numbers ............................................................................. 2-1 Table 2-3: Pre-Development Model Data ................................................................................. 2-2 Table 2-4: Post-Development Model Data ............................................................................... 2-2 Table 2-5: Substation Yard Stone (Basin) Volumes ................................................................... 2-3 Table 2-6: Basin Water Surface Elevation (WSE) ...................................................................... 2-3 Table 2-7: Site Analysis Point Peak Flow Rates ......................................................................... 2-3 Table 2-8: Recharge Volume Summary ..................................................................................... 2-4 Table 2-9: Water Quality Volume Summary ............................................................................. 2-4 January 2025 Stormwater Management Study Revision 3 List of Abbreviations Eversource Energy List of Abbreviations Abbreviation Term/Phrase/Name AC Acres BMP Best Management Practice Burns & McDonnell Burns & McDonnell Engineering Company, Inc. CF Cubic Feet CFS Cubic Feet per Second CN Curve Number FEMA Federal Emergency Management Agency FIRM Flood Insurance Rate Map MassDEP Massachusetts Department of Environmental Protection NOAA National Oceanic and Atmospheric Administration NRCS National Resource Conservation Service SCS Soil Conservation Service TR-55 Technical Release 55 Urban Hydrology for Small Watersheds TSS Total Suspended Solid WQv Water Quality Volume USDA United States Department of Agriculture USGS United States Geological Survey January 2025 Stormwater Management Study Revision 3 Index and Certification Eversource Energy Index and Certification NSTAR Electric Company d/b/a Eversource Energy Stormwater Management Study Project No. 152841 Report Index Chapter Number Chapter Title Number of Pages 1.0 Project Overview 3 2.0 MassDEP Stormwater Standards Compliance 6 3.0 Conclusion 1 Appendix D Watershed Maps 2 Appendix E Hydrologic Calculations 66 Appendix F WQv & Recharge Calculations 3 Appendix G Erosion Control Plan & Details 2 Appendix H Operation & Maintenance Plan 12 Appendix I MassDEP Stormwater Checklist 8 Appendix J Illicit Discharge Compliance Statement 1 Certification I hereby certify, as a Professional Engineer in the Commonwealth of Massachusetts, that the information in this document was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse by Eversource Energy or others without specific verification or adaptation by the Engineer. Robbyn L. Reed, P.E. (MA 49782) Date: Reference information provided by others and not certified by the above sealing Engineer: Appendix A Site Location Map Appendix B FEMA FIRM Appendix C Soil Data Digitally Sealed 01/06/2025 1/6/25 January 2025 Stormwater Management Study Revision 3 Project Overview Eversource Energy 1-1 1.0 Project Overview 1.1 Location & Project Description Burns & McDonnell has prepared this Stormwater Management Study on behalf of NSTAR Electric Company d/b/a Eversource Energy in support of the West Barnstable Station Expansion project (“Project”). The Project is in the Town of Barnstable, Massachusetts (“Site”). A site location map is included for reference in Appendix A. The Project will require an expansion of the existing substation yard in the northeast and a rebuilding of the existing station gravel driveway. Project work will consist of vegetation clearing, site grading, and the installation of three retaining walls to provide a level station pad for the installation of new electrical equipment. Ancillary activities include both overhead and underground transmission line construction on and adjacent to the Site and related site preparation activities. The Project parcel is 11.95 acres and is owned by Eversource Energy. The Site includes an isolated vegetated wetland subject to jurisdiction under the Barnstable Wetlands Protection Bylaw and associated 100-foot buffer zone preceding Oak Street to the west, a wooded area to the east, residential properties to the north, and Route 6 (Mid-Cape Highway) to the south. Elevations within the station expansion area vary from 140 to 174-feet, as referenced to the North American Vertical Datum of 1988 (NAVD88). 1.2 Floodplain According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Number 25001C0561J for Barnstable, Massachusetts, Effective Date 7/16/2014, the Site is located within “Zone X,” an “area of minimum flood hazard,” which represents areas outside the 500-year floodplain. The FEMA FIRM is included for reference in Appendix B. 1.3 Soils The National Resources Conservation Service (NRCS) Web Soil Survey identifies the existing soil types and their assigned hydrologic soil group (HSG) as listed in Table 1-1 below. The HSG is noted to be HSG “A” within the Site area. Group A soils, as defined by the USDA, indicate “a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well-drained to excessively drained sands or gravelly sands.” (NRCS Web Soil Survey). Furthermore, USDA National Engineering Handbook, Part 630, Chapter 7 notes that HSG A designated soils exhibit “saturated hydraulic conductivity of all soil layers [in excess of] 40.0 micrometers per second (5.67 inches per hour). The depth to any water or impermeable layer is greater than 50 centimeters [20 inches]”. The NRCS report is included for reference in Appendix C. Table 1-1: NRCS Soil Types Soil Map Symbol Soil Map Unit Name HSG 483C Plymouth-Barnstable complex, rolling, very bouldery A 483D Plymouth-Barnstable complex, hilly, very bouldery A 494C Barnstable-Plymouth-Nantucket complex, rolling, very bouldery A January 2025 Stormwater Management Study Revision 3 Project Overview Eversource Energy 1-2 A geotechnical investigation was performed and detailed in the report: Report on Eversource QP700 Project Station 921 Additions 661 Oak Street, West Barnstable, Massachusetts (“Geotechnical Report”), prepared by Haley and Aldrich, Inc., revised February 2023. Site and subsurface conditions of the subsoil were generally noted in the report as “very loose to medium dense brown and yellow-brown silty SAND with gravel (SM), poorly graded SAND (SP), or silty SAND (SM).” Fill conditions were recorded as “loose to medium dense yellow brown poorly graded SAND with gravel.” Moraine deposits were encountered as “silty SAND with gravel (SM), silty SAND (SM), well- graded SAND with silt (SW-SM), or poorly graded SAND with silt (SP-SM).” Glacial stratified deposits were labeled as “loose to dense stratified poorly graded SAND (SP) or well-graded SAND (SW).” The Geotechnical Report is provided for reference in Appendix C. Infiltration testing was also performed at the Site. Based on a falling head in-situ slug test, Haley and Aldrich calculated and recommended a soil hydraulic conductivity, Kh, of 0.013 cm/sec (18.4 inch/hour) near the location of the proposed substation yard section. Haley and Aldrich evaluated the groundwater conditions and did not observe groundwater at any test borings. However, at boring B4, a possible perched water table was observed approximately 15 ft below the ground surface. 1.4 Pre-Development Site Conditions The existing Site is partially developed with a substation consisting of a gravel driveway and a 6-inch-thick layer of 3/4-inch crushed stone yard, perimeter fence, and electrical equipment. The remainder of the site is a mixture of brush and wooded areas. From an analysis of topographical data provided in a Site survey by Eversource on August 29, 2024, most of the Site generally drains north towards the adjacent Eversource Station 920. The wooded area on the eastern portion of the Site has a high point, which is considered the limit of the eastern watersheds being analyzed. The high point is treated as a ridge line that splits runoff flow towards the north and the south. Three “analysis points” were selected, and four pre-development watersheds were delineated to encompass the limit of disturbance of the Site. These watersheds, EDA-01, EDA-02, EDA-03, and EDA-04, are predominantly distinguished by their respective contributing runoff areas. The Pre-Development Watershed Map is provided for reference in Appendix D. EDA-01 consists of the wooded area east of the existing substation yard and a portion of the area developed by the proposed yard expansion. Several gravel trails cross through the wooded area. It also includes a small section of brush that buffers the section between the edge of the existing yard and tree line. This area drains via overland flow to a localized depression called analysis point “Offsite-South.” EDA-02 consists of the existing substation yard and brush areas that drain into the yard section called analysis point “Substation.” EDA-03 encompasses a large portion of the area being developed. This watershed is a wooded area on the east side, which drains north to a brush area and the existing gravel driveway into the existing substation yard. EDA-04 consists of the brush and meadow areas west of the existing gravel driveway draining to the isolated wetland on the west side of the Site. EDA-03 and EDA-04 drain via overland flow to analysis point “Offsite-North.” 1.5 Post-Development Site Conditions The proposed Site will be developed with an expanded substation yard. Adjacent areas of the Site will be re-graded or disturbed to accommodate the installation of two retaining walls. Disturbed areas will be reseeded and modeled as meadow. Undisturbed areas will remain wooded or covered with brush. Similar to pre-development conditions, three “analysis points” were selected, and four post-development watersheds were delineated to January 2025 Stormwater Management Study Revision 3 Project Overview Eversource Energy 1-3 encompass the limit of disturbance of the Site. These watersheds, PDA-01, PDA-02, PDA-03, and PDA-04, are predominantly distinguished by their respective contributing runoff areas. The Post-Development Watershed Map is provided for reference in Appendix D. PDA-01 still consists of the wooded area east of the existing substation yard, the proposed yard expansion, and the adjacent disturbed areas to be reseeded. This area still drains via overland flow to a localized depression called analysis point “Offsite-South.” PDA-02 consists of the existing substation yard and most of the proposed yard expansion that drains into the yard section called analysis point “Substation.” The proposed yard expansion is bordered by retaining walls or adjacent riprap 2H:1V slopes that form the watershed's boundary. The Site retains the drainage patterns outside the yard expansion by meeting the existing grade along the wall. PDA-03 has been reduced significantly by the proposed substation yard expansion. Like PDA-01, the watershed includes disturbed areas to be reseeded and undisturbed wooded and brush areas north and east of the substation yard expansion. Additionally, a portion of the gravel driveway is still contained within PDA-03. PDA-04 consists of the area draining to the isolated vegetated wetland to the west side of the Site. The meadow has expanded to encompass the proposed grading, and part of the gravel driveway has been graded to drain towards this wetland. PDA-03 and PDA-04 are still drained via overland flow to the analysis point “Offsite-North.” The post-development improvements increase impervious cover at the Site from 3,228 square feet in existing conditions to 19,823 square feet in post-development, a 16,595 square foot increase. The foundations associated with the new electrical equipment and control house within the yard expansion drive the increase. January 2025 Stormwater Management Study Revision 3 MassDEP Stormwater Standards Compliance Eversource Energy 2-1 2.0 MassDEP Stormwater Standards Compliance This stormwater management study has been developed to demonstrate compliance with state and local regulations and mitigate the downstream effects of development at the Site. The stormwater requirements set forth by the Massachusetts Department of Environmental Protection (MassDEP) in the Massachusetts Stormwater Handbook (“Handbook”), dated February 2008, were followed to the maximum extent practicable as described herein. 2.1 Rainfall Data NOAA Atlas 14, Precipitation-Frequency Atlas of the United States, Volume 10, Version 3 published in 2019 provides rainfall intensity information. Type-III 24-hour rainfall depths for the Site were obtained from NOAA’s online precipitation frequency data server (https://hdsc.nws.noaa.gov/hdsc/pfds/). Pertinent rainfall data is summarized in Table 2-1, Full NOAA precipitation frequency data is provided in Appendix E. Table 2-1: Type-III Design Storm Frequency-Depth Return Frequency (yr) 24-Hour Depth (in) 2 3.40 10 4.95 100 7.42 2.2 Runoff Data Runoff calculations were completed using the SCS TR-20 runoff curve number method in HydroCAD version 10.10- 4b modeling software. The input values used in the HydroCAD model are presented in Tables 2-2 through 2-4. Table 2-2: Standard Runoff Curve Numbers Land Cover Type Soil Type Curve Number Substation Yard Stone (Basin) A 98 Substation Yard Stone (Non-Basin) A 85 Wetland --- 98 Impervious --- 98 Gravel A 96 Brush – Fair Condition A 35 Woods – Good Condition A 30 Meadow A 30 January 2025 Stormwater Management Study Revision 3 MassDEP Stormwater Standards Compliance Eversource Energy 2-2 Table 2-3: Pre-Development Model Data Watershed ID Area (sf) Curve Number Time of Concentration (min) EDA-01 42,106 32 6.0 EDA-02 31,383 87 6.0 EDA-03 64,833 39 6.0 EDA-04 27,421 41 6.0 Table 2-4: Post-Development Model Data Watershed ID Area (sf) Curve Number Time of Concentration (min) PDA-01 33,588 30 6.0 PDA-02 66,610 96 6.0 PDA-03 31,609 41 6.0 PDA-04 33,939 45 6.0 A minimum time of concentration (Tc) of 6 minutes was applied to watersheds with calculated time of concentrations below 6 minutes, in compliance with TR-55. Watershed maps of the pre-development and post- development conditions are included in Appendix D. 2.3 Standard 1 – No New Untreated Stormwater Discharges Standard 1 requires that “no new stormwater conveyances (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth” (Handbook Vol. 1, Ch. 1, pg. 4). The Best Management Practices (“BMPs”) included in the proposed stormwater management system have been designed in accordance with the Massachusetts Stormwater Handbook and Eversource Best Management Practices Manual for Massachusetts and Connecticut. Supporting information and computations are presented in this report, demonstrating compliance with Standard 1 where no new untreated runoff will be discharged from the site. Treatment is provided using practices designed in accordance with Standards 4 through 6, as described in the following sections. 2.4 Standard 2 – Post-Development Peak Discharge Rates Standard 2 requires that post-development peak discharge rates do not exceed pre-development peak discharge rates for the 2-year and 10-year, 24-hour storm events. The proposed condition of the stormwater runoff peak flow rate will be reduced versus that of existing conditions due to the runoff detention properties of the substation yard stone section. For the Site, a substation yard crushed stone pad BMP is used to treat and control stormwater runoff. The substation yard crushed stone pad is modeled as a basin in pre-development and post-development conditions. The basin volume or “available storage” is calculated using the substation yard surface area minus the concrete foundations and roof areas, multiplied by a depth of 6 inches and a void ratio of 40%. The bottom of the yard section is set at elevation 152.50-feet NAVD88, and the top of the finished grade (top of stone) is set at elevation 153.00-feet NAVD88 in pre-development and post-development conditions. The basin was modeled using a January 2025 Stormwater Management Study Revision 3 MassDEP Stormwater Standards Compliance Eversource Energy 2-3 default Rawls infiltration rate of 2.41 inches/hour for Loamy Sand (HSG A), which is more conservative than the field-observed rate described in Section 1.3. The overflow weir length was measured using the distance along the northern fence line of the yard in pre-development conditions and along the northern yard grade break in post- development conditions. Table 2-5: Substation Yard Stone (Basin) Volumes Pre-Development Post-Development Net Stone Surface Area (sf) Available Storage (cf) Net Stone Surface Area (sf) Available Storage (cf) 23,343 4,668 44,606 8,921 Table 2-6: Basin Water Surface Elevation (WSE) Return Frequency (yr) Pre- Development Peak WSE (ft) Post- Development Peak WSE (ft) 2 152.52 152.57 10 152.60 152.69 100 152.80 152.95 The pre- and post-development conditions were modeled in HydroCAD to determine the associated peak flow rates according to the watershed maps. Table 2-7 summarizes the peak flow rates for the Site and the retention of flow achieved by the substation yard stone section. Refer to Appendix E for the comprehensive HydroCAD modeling results. Table 2-7: Site Analysis Point Peak Flow Rates Analysis Point Return Frequency (yr) Pre-Development Flow (cfs) Post-Development Flow (cfs) Net Change (cfs) Offsite-South 2 0 0 0 10 0 0 0 100 0.12 0.04 -0.08 Offsite-North 2 0 0 0 10 0.05 0.05 0 100 0.90 0.61 -0.29 Substation 2 0 0 0 10 0 0 0 100 0 0 0 Per Table 2-7, the peak discharge rates in post-development conditions are the same or reduced from the existing conditions for the modeled storm events and, therefore, comply with Standard 2 of the Handbook. January 2025 Stormwater Management Study Revision 3 MassDEP Stormwater Standards Compliance Eversource Energy 2-4 2.5 Standard 3 – Recharge to Groundwater The infiltration volume for groundwater recharge required by the Handbook is determined by soil type, infiltration rate, and the increase in impervious area to the Site. At a minimum, the annual recharge from the post- development Site shall approximate the annual recharge from pre-development conditions based on soil type. Site soils are classified as Hydrologic Soil Group (HSG) Type A, and therefore, the required recharge volume is 0.60 inches of runoff over the proposed impervious area. The recharge volume is summarized in Table 2-8. Table 2-8: Recharge Volume Summary Volume Required (cf) Volume Provided (cf) 991 8,921 The substation stone yard section functions as a recharge system for the Site. This infiltration BMP has been designed to drain completely within 72 hours. It is concluded that Standard 3 is met by providing a recharge volume that exceeds the required volume of the Handbook. Calculations for groundwater recharge are included in Appendix F. 2.6 Standard 4 – Water Quality Treatment The Handbook requires that the stormwater system be designed to remove 80% of the average annual post- construction load of Total Suspended Solids (TSS). As defined in Volume 1 of the Handbook, the Site qualifies as an area with a rapid infiltration rate (greater than 2.4 inches per hour); thus, the required water quality volume for treatment equals 1.0 inches times the total impervious area of the pre-development. The water quality volume is summarized in Table 2-9. Table 2-9: Water Quality Volume Summary Volume Required (cf) Volume Provided (cf) 1,652 8,921 Volume 3 of the Massachusetts Stormwater Handbook states that often, one BMP is sized to provide both water quality treatment and recharge. Since 80% of the TSS load is not proposed to be fully removed prior to discharge to the infiltration BMP (substation yard stone section) and due to site constraints, the substation yard stone section is being used to fulfill the requirements of both Standards 3 (Recharge) and 4 (Water Quality Treatment). In such instances, the recharge system must be sized to treat or hold the target volume, which is larger than the required water quality volume (WQV) and recharge volume. As stated, the total recharge volume provided in the substation stone yard section exceeds the required water quality volume of the Handbook. Calculations for water quality volume are included in Appendix F. Additionally, the TSS removal matrix within the Handbook guidelines grants 80% removal of TSS for infiltration BMPs, provided they are combined with one or more pre-treatment BMPs prior to infiltration. Runoff from impervious areas (control enclosure roof and equipment foundations) is disconnected and will sheet flow directly onto the crushed rock surfacing for filtering, providing pretreatment prior to infiltration. January 2025 Stormwater Management Study Revision 3 MassDEP Stormwater Standards Compliance Eversource Energy 2-5 2.7 Standard 5 – Land Uses with Higher Pollutant Loading The Site does not have a use type or on-site materials that would qualify it for high pollutant load; therefore, this standard does not apply to the Site. 2.8 Standard 6 – Discharges to Critical Areas The Handbook defines critical areas as Outstanding Resource Waters, Special Resource Waters, recharge areas for public water supplies, bathing beaches, and shellfish growing areas. Based on a review of publicly available GIS data, the Site is not part of and does not discharge into a critical area; therefore, this standard does not apply to the Site. 2.9 Standard 7 – Redevelopment The proposed construction does not qualify as a redevelopment project, as defined by the Handbook; therefore, this standard does not apply to the proposed construction. 2.10 Standard 8 – Erosion and Sediment Controls Erosion and sediment control BMPs will be implemented at the Site prior to construction and land disturbance activities and are to remain in working order until construction activities cease and the Site is stabilized. All erosion and sediment controls at the Site will be required to comply with the Massachusetts Erosion and Sediment Control Guidelines for Urban and Suburban Areas: A Guide for Planners, Designers, and Municipal Officials, May 2003 and Eversource standards. The erosion control measures to be utilized during the substation construction are shown in Appendix G. The construction stormwater pollution prevention plan implements the following BMPs: · Silt fence and silt sock along the downgradient portions of the Site, as depicted on the record permit drawings approved by the Barnstable Conservation Commission. · To minimize dust and sediment tracking on adjacent roads, a vehicle construction entrance shall be installed as necessary in accordance with Eversource’s BMP manual where construction vehicles enter and exit the Site from Oak Street. · At a minimum, erosion and sediment controls shall be inspected weekly and after storm events. · Inlet protection is installed on catch basins using silt sack inserts. · Sump pits for dewatering construction excavations. · Soil stockpiles are covered or seeded and surrounded by a silt fence. · Concrete washouts at least 50-feet from the isolated vegetated wetland. 2.11 Standard 9 – Long Term Operation and Maintenance Plan The Project’s stormwater-related Operation and Maintenance Plan is included in Appendix H. The Operation and Maintenance Plan defines the responsibilities that the owner of the Site must undertake to comply with required inspections and maintenance to ensure the long-term functionality of the Site’s stormwater BMPs. 2.12 Standard 10 – Illicit Discharges Illicit discharges to the stormwater management system are not entirely comprised of stormwater. According to the Handbook, an illicit discharge does not include discharges from the following activities or facilities: firefighting, water line flushing, landscape irrigation, uncontaminated groundwater, potable water sources, foundation or footing drains, water used for street washing and water used to clean residential buildings without detergents. The current Site layout, grading and proposed stormwater system design ensures that no illicit discharges occur on- site. A copy of the signed Illicit Discharge Compliance Statement is provided in Appendix J. January 2025 Stormwater Management Study Revision 3 Conclusion Eversource Energy 3-1 3.0 Conclusion The proposed substation development has been designed to fully comply with the Barnstable Wetlands Protection Bylaw and implementing regulations, Massachusetts Stormwater Handbook and Eversource Best Management Practices Manual for Massachusetts and Connecticut. No new untreated stormwater discharges are added to the Site. The stormwater management system is designed so that the post-development conditions do not result in an increase in stormwater runoff peak discharge rate when compared to pre-development conditions for the required design storms. The substation stone yard section is designed to meet infiltration requirements per the Massachusetts Stormwater Handbook. Water quality treatment is provided for the post-development conditions by utilizing the substation stone yard section for infiltration, with required pretreatment and sizing for the water quality volume. The Project does not constitute a use with higher pollutant loads, and no critical areas are identified for the Site. Temporary erosion and sedimentation controls will be employed during construction to minimize construction impacts on the downstream property, storm drain systems and waters. As always, post- development operations and maintenance are imperative to the functionality of the post-construction stormwater management systems. APPENDIX A – SITE LOCATION MAP SITE USGS QUAD MAP HYANNIS, MA Scale: 1"=1000' APPENDIX B – FEMA FIRM National Flood Hazard Layer FIRMette 0 500 1,000 1,500 2,000250 Feet Ü SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT SPECIAL FLOOD HAZARD AREAS Without Base Flood Elevation (BFE) Zone A, V, A99 With BFE or DepthZone AE, AO, AH, VE, AR Regulatory Floodway 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mileZone X Future Conditions 1% Annual Chance Flood HazardZone X Area with Reduced Flood Risk due to Levee. See Notes.Zone X Area with Flood Risk due to LeveeZone D NO SCREEN Area of Minimal Flood Hazard Zone X Area of Undetermined Flood HazardZone D Channel, Culvert, or Storm Sewer Levee, Dike, or Floodwall Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation Coastal Transect Coastal Transect Baseline Profile Baseline Hydrographic Feature Base Flood Elevation Line (BFE) Effective LOMRs Limit of Study Jurisdiction Boundary Digital Data Available No Digital Data Available Unmapped This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 9/19/2022 at 3:24 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes. Legend OTHER AREAS OF FLOOD HAZARD OTHER AREAS GENERAL STRUCTURES OTHER FEATURES MAP PANELS 8 B 20.2 The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. 1:6,000 70°21'19"W 41°41'23"N 70°20'42"W 41°40'56"N Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020 APPENDIX C – SOIL DATA United States Department of Agriculture A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Barnstable County, Massachusetts QP700 - West Barnstable Natural Resources Conservation Service October 11, 2022 Preface Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment. Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations. Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951). Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations. The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey. Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require 2 alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. 3 Contents Preface....................................................................................................................2 How Soil Surveys Are Made..................................................................................5 Soil Map..................................................................................................................8 Soil Map (QP700 - West Barnstable)...................................................................9 Legend................................................................................................................10 Map Unit Legend (QP700 - West Barnstable)....................................................11 Map Unit Descriptions (QP700 - West Barnstable).............................................11 Barnstable County, Massachusetts.................................................................13 483C—Plymouth-Barnstable complex, rolling, very bouldery.....................13 483D—Plymouth-Barnstable complex, hilly, very bouldery.........................15 494C—Barnstable-Plymouth-Nantucket complex, rolling, very bouldery....17 Soil Information for All Uses...............................................................................20 Soil Properties and Qualities..............................................................................20 Soil Qualities and Features.............................................................................20 Hydrologic Soil Group (QP700 - West Barnstable).....................................20 References............................................................................................................25 4 How Soil Surveys Are Made Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity. Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA. The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape. Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries. Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil 5 scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research. The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas. Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape. Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties. While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil. Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date. After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and Custom Soil Resource Report 6 identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately. Custom Soil Resource Report 7 Soil Map The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit. 8 9 Custom Soil Resource Report Soil Map (QP700 - West Barnstable)461566046157104615760461581046158604615910461596046160104616060461566046157104615760461581046158604615910461596046160104616060387500 387550 387600 387650 387700 387750 387800 387500 387550 387600 387650 387700 387750 387800 41° 41' 18'' N 70° 21' 6'' W41° 41' 18'' N70° 20' 52'' W41° 41' 4'' N 70° 21' 6'' W41° 41' 4'' N 70° 20' 52'' WN Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 19N WGS84 0 100 200 400 600Feet 0 30 60 120 180Meters Map Scale: 1:2,100 if printed on A portrait (8.5" x 11") sheet. Soil Map may not be valid at this scale. MAP LEGEND MAP INFORMATION Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Special Point Features Blowout Borrow Pit Clay Spot Closed Depression Gravel Pit Gravelly Spot Landfill Lava Flow Marsh or swamp Mine or Quarry Miscellaneous Water Perennial Water Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot Spoil Area Stony Spot Very Stony Spot Wet Spot Other Special Line Features Water Features Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads Background Aerial Photography The soil surveys that comprise your AOI were mapped at 1:25,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Barnstable County, Massachusetts Survey Area Data: Version 19, Sep 9, 2022 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Sep 5, 2020—Sep 7, 2020 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. Custom Soil Resource Report 10 Map Unit Legend (QP700 - West Barnstable) Map Unit Symbol Map Unit Name Acres in AOI Percent of AOI 483C Plymouth-Barnstable complex, rolling, very bouldery 3.8 30.1% 483D Plymouth-Barnstable complex, hilly, very bouldery 7.2 56.8% 494C Barnstable-Plymouth-Nantucket complex, rolling, very bouldery 1.7 13.2% Totals for Area of Interest 12.7 100.0% Map Unit Descriptions (QP700 - West Barnstable) The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit. A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils. Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape. Custom Soil Resource Report 11 The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas. An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities. Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series. Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups. A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example. An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example. An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example. Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example. Custom Soil Resource Report 12 Barnstable County, Massachusetts 483C—Plymouth-Barnstable complex, rolling, very bouldery Map Unit Setting National map unit symbol: 98rz Elevation: 0 to 1,000 feet Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 45 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland Map Unit Composition Plymouth and similar soils:55 percent Barnstable and similar soils:20 percent Minor components:25 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Plymouth Setting Landform:Moraines Landform position (two-dimensional):Shoulder Landform position (three-dimensional):Side slope Down-slope shape:Convex Across-slope shape:Convex Parent material:Loose sandy glaciofluvial deposits and/or loose sandy ablation till; loose sandy glaciofluvial deposits and/or loose sandy ablation till Typical profile H1 - 0 to 3 inches: loamy coarse sand H2 - 3 to 29 inches: gravelly loamy coarse sand H3 - 29 to 64 inches: gravelly coarse sand Properties and qualities Slope:8 to 15 percent Surface area covered with cobbles, stones or boulders:2.0 percent Depth to restrictive feature:More than 80 inches Drainage class:Excessively drained Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat):High to very high (6.00 to 20.00 in/hr) Depth to water table:More than 80 inches Frequency of flooding:None Frequency of ponding:None Available water supply, 0 to 60 inches: Low (about 3.0 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Ecological site: F149BY005MA - Dry Outwash Hydric soil rating: No Custom Soil Resource Report 13 Description of Barnstable Setting Landform:Moraines Landform position (two-dimensional):Shoulder Landform position (three-dimensional):Side slope Down-slope shape:Convex Across-slope shape:Convex Parent material:Friable loamy ablation till over reworked sandy glaciofluvial deposits; loamy ablation till over reworked sandy outwash Typical profile H1 - 0 to 1 inches: sandy loam H2 - 1 to 23 inches: sandy loam H3 - 23 to 64 inches: coarse sand Properties and qualities Slope:8 to 15 percent Surface area covered with cobbles, stones or boulders:1.6 percent Depth to restrictive feature:More than 80 inches Drainage class:Well drained Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat):High (2.00 to 6.00 in/hr) Depth to water table:More than 80 inches Frequency of flooding:None Frequency of ponding:None Available water supply, 0 to 60 inches: Low (about 4.0 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Ecological site: F149BY011MA - Well Drained Till Uplands Hydric soil rating: No Minor Components Hinckley Percent of map unit:10 percent Hydric soil rating: No Carver Percent of map unit:10 percent Hydric soil rating: No Nantucket Percent of map unit:5 percent Hydric soil rating: No Custom Soil Resource Report 14 483D—Plymouth-Barnstable complex, hilly, very bouldery Map Unit Setting National map unit symbol: 98s0 Elevation: 0 to 1,000 feet Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 45 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland Map Unit Composition Plymouth and similar soils:55 percent Barnstable and similar soils:20 percent Minor components:25 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Plymouth Setting Landform:Moraines Landform position (two-dimensional):Backslope Landform position (three-dimensional):Side slope Down-slope shape:Linear Across-slope shape:Convex Parent material:Loose sandy glaciofluvial deposits and/or loose sandy ablation till; loose sandy glaciofluvial deposits and/or loose sandy ablation till Typical profile H1 - 0 to 3 inches: loamy coarse sand H2 - 3 to 29 inches: gravelly loamy coarse sand H3 - 29 to 64 inches: gravelly coarse sand Properties and qualities Slope:15 to 25 percent Surface area covered with cobbles, stones or boulders:2.0 percent Depth to restrictive feature:More than 80 inches Drainage class:Excessively drained Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat):High to very high (6.00 to 20.00 in/hr) Depth to water table:More than 80 inches Frequency of flooding:None Frequency of ponding:None Available water supply, 0 to 60 inches: Low (about 3.0 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Custom Soil Resource Report 15 Ecological site: F149BY005MA - Dry Outwash Hydric soil rating: No Description of Barnstable Setting Landform:Moraines Landform position (two-dimensional):Backslope Landform position (three-dimensional):Side slope Down-slope shape:Linear Across-slope shape:Convex Parent material:Friable loamy ablation till over reworked sandy glaciofluvial deposits; loamy ablation till over reworked sandy outwash Typical profile H1 - 0 to 1 inches: sandy loam H2 - 1 to 23 inches: sandy loam H3 - 23 to 64 inches: coarse sand Properties and qualities Slope:15 to 25 percent Surface area covered with cobbles, stones or boulders:1.6 percent Depth to restrictive feature:More than 80 inches Drainage class:Well drained Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat):High (2.00 to 6.00 in/hr) Depth to water table:More than 80 inches Frequency of flooding:None Frequency of ponding:None Available water supply, 0 to 60 inches: Low (about 4.0 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Ecological site: F149BY011MA - Well Drained Till Uplands Hydric soil rating: No Minor Components Carver Percent of map unit:10 percent Hydric soil rating: No Hinckley Percent of map unit:10 percent Hydric soil rating: No Nantucket Percent of map unit:5 percent Hydric soil rating: No Custom Soil Resource Report 16 494C—Barnstable-Plymouth-Nantucket complex, rolling, very bouldery Map Unit Setting National map unit symbol: 98q2 Elevation: 0 to 1,000 feet Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 45 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland Map Unit Composition Barnstable and similar soils:35 percent Plymouth and similar soils:30 percent Nantucket and similar soils:20 percent Minor components:15 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Barnstable Setting Landform:Moraines Landform position (two-dimensional):Shoulder Landform position (three-dimensional):Side slope Down-slope shape:Convex Across-slope shape:Convex Parent material:Friable loamy ablation till over reworked sandy glaciofluvial deposits; loamy ablation till over reworked sandy outwash Typical profile H1 - 0 to 1 inches: sandy loam H2 - 1 to 23 inches: sandy loam H3 - 23 to 64 inches: coarse sand Properties and qualities Slope:8 to 15 percent Surface area covered with cobbles, stones or boulders:2.0 percent Depth to restrictive feature:More than 80 inches Drainage class:Well drained Runoff class: Medium Capacity of the most limiting layer to transmit water (Ksat):High (2.00 to 6.00 in/hr) Depth to water table:More than 80 inches Frequency of flooding:None Frequency of ponding:None Available water supply, 0 to 60 inches: Low (about 4.0 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Custom Soil Resource Report 17 Hydrologic Soil Group: A Ecological site: F149BY011MA - Well Drained Till Uplands Hydric soil rating: No Description of Plymouth Setting Landform:Moraines Landform position (two-dimensional):Shoulder Landform position (three-dimensional):Side slope Down-slope shape:Convex Across-slope shape:Convex Parent material:Loose sandy glaciofluvial deposits and/or loose sandy ablation till Typical profile H1 - 0 to 3 inches: loamy coarse sand H2 - 3 to 29 inches: gravelly loamy coarse sand H3 - 29 to 64 inches: gravelly coarse sand Properties and qualities Slope:8 to 15 percent Surface area covered with cobbles, stones or boulders:1.6 percent Depth to restrictive feature:More than 80 inches Drainage class:Excessively drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat):High to very high (6.00 to 20.00 in/hr) Depth to water table:More than 80 inches Frequency of flooding:None Frequency of ponding:None Available water supply, 0 to 60 inches: Low (about 3.0 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Ecological site: F149BY005MA - Dry Outwash Hydric soil rating: No Description of Nantucket Setting Landform:Moraines Landform position (two-dimensional):Shoulder Landform position (three-dimensional):Side slope Down-slope shape:Convex Across-slope shape:Convex Parent material:Friable coarse-loamy eolian deposits over dense loamy lodgment till Typical profile H1 - 0 to 5 inches: sandy loam H2 - 5 to 27 inches: sandy loam H3 - 27 to 64 inches: loam Properties and qualities Slope:8 to 15 percent Surface area covered with cobbles, stones or boulders:1.6 percent Custom Soil Resource Report 18 Depth to restrictive feature:20 to 34 inches to densic material Drainage class:Well drained Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat):Moderately low to moderately high (0.06 to 0.60 in/hr) Depth to water table:About 24 to 30 inches Frequency of flooding:None Frequency of ponding:None Available water supply, 0 to 60 inches: Low (about 3.6 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: B Ecological site: F149BY009MA - Well Drained Dense Till Uplands Hydric soil rating: No Minor Components Boxford Percent of map unit:5 percent Hydric soil rating: No Carver Percent of map unit:5 percent Hydric soil rating: No Merrimac Percent of map unit:3 percent Hydric soil rating: No Hinckley Percent of map unit:2 percent Hydric soil rating: No Custom Soil Resource Report 19 Soil Information for All Uses Soil Properties and Qualities The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality. Soil Qualities and Features Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil. Hydrologic Soil Group (QP700 - West Barnstable) Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. 20 Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Custom Soil Resource Report 21 22 Custom Soil Resource Report Map—Hydrologic Soil Group (QP700 - West Barnstable)461566046157104615760461581046158604615910461596046160104616060461566046157104615760461581046158604615910461596046160104616060387500 387550 387600 387650 387700 387750 387800 387500 387550 387600 387650 387700 387750 387800 41° 41' 18'' N 70° 21' 6'' W41° 41' 18'' N70° 20' 52'' W41° 41' 4'' N 70° 21' 6'' W41° 41' 4'' N 70° 20' 52'' WN Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 19N WGS84 0 100 200 400 600Feet 0 30 60 120 180Meters Map Scale: 1:2,100 if printed on A portrait (8.5" x 11") sheet. Soil Map may not be valid at this scale. MAP LEGEND MAP INFORMATION Area of Interest (AOI) Area of Interest (AOI) Soils Soil Rating Polygons A A/D B B/D C C/D D Not rated or not available Soil Rating Lines A A/D B B/D C C/D D Not rated or not available Soil Rating Points A A/D B B/D C C/D D Not rated or not available Water Features Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads Background Aerial Photography The soil surveys that comprise your AOI were mapped at 1:25,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Barnstable County, Massachusetts Survey Area Data: Version 19, Sep 9, 2022 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Sep 5, 2020—Sep 7, 2020 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. Custom Soil Resource Report 23 Table—Hydrologic Soil Group (QP700 - West Barnstable) Map unit symbol Map unit name Rating Acres in AOI Percent of AOI 483C Plymouth-Barnstable complex, rolling, very bouldery A 3.8 30.1% 483D Plymouth-Barnstable complex, hilly, very bouldery A 7.2 56.8% 494C Barnstable-Plymouth- Nantucket complex, rolling, very bouldery A 1.7 13.2% Totals for Area of Interest 12.7 100.0% Rating Options—Hydrologic Soil Group (QP700 - West Barnstable) Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher Custom Soil Resource Report 24 References American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition. American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00. Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31. Federal Register. July 13, 1994. Changes in hydric soils of the United States. Federal Register. September 18, 2002. Hydric soils of the United States. Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States. National Research Council. 1995. Wetlands: Characteristics and boundaries. Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262 Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577 Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580 Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section. United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1. United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374 United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084 25 United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242 United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624 United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf Custom Soil Resource Report 26      www.haleyaldrich.com  REPORT ON  EVERSOURCE QP700 PROJECT  STATION 921 ADDITIONS  661 OAK STREET, WEST BARNSTABLE, MASSACHUSETTS            by  Haley & Aldrich, Inc.  Rocky Hill, Connecticut        for   Eversource Energy  c/o Burns & McDonnell                  File No. 0206317‐000‐01  December 2022  Revised February 2023       HALEY & ALDRICH, INC. 100 Corporate Place Suite 105 Rocky Hill, CT 06067 860.282.9400  www.haleyaldrich.com  Revised 24 February 2023   Revised 23 December 2022  21 November 2022  File No. 0206317‐000‐01    Burns & McDonnell  10 N. Park Place, Suite 330  Morristown, NJ 07960    Attention: John Troiano, Project Manager      Subject: Eversource QP700 Project – Station 921 Additions    661 Oak Street    West Barnstable, Massachusetts    Ladies and Gentlemen:    This report presents geotechnical engineering recommendations for the proposed additions and  alterations at the existing Eversource Station 921 in West Barnstable, Massachusetts.  The work is part  of the larger QP700 Project, also known as the Mid‐Cape Solution Project. This report has been updated  based on design drawings received from Burns & McDonnell on 16 February 2023.    The data included in this report are based on subsurface explorations performed at the project site for  the proposed additions.  The substation is along the existing Eversource 115‐kV Transmission Line Right‐ Of‐Way.  This report includes recommendations for support of proposed structures and considerations  for construction.     Sincerely yours,  HALEY & ALDRICH, INC.                     Jennifer N. Buchanon, P.E.*  Sr. Project Manager  *P.E. in CT & NY      John G. DiGenova, P.E.   Technical Expert  Timothy Crowl, P.E.  Program Manager  *P.E. in CT, NY & VA            Enclosures    \\haleyaldrich.com\share\CF\Projects\0206317\Deliverable\01_West Barnstable\2022‐1214_HAI‐R‐Sta 921 West Barnstable‐QP700 Project Geotechnical  Report_rev2 2023‐0224.docx  TABLE OF CONTENTS  Page      _Toc128131365  List of Tables v  List of Figures v  1. Introduction 6  1.1 PROJECT DESCRIPTION 6  1.2 PURPOSE AND SCOPE 2  1.3 ELEVATION DATUM 2  1.4 LIMITATIONS 2  2. Site & Subsurface Conditions 3  2.1 GENERAL 3  2.2 VACUUM EXCAVATION 3  2.3 TEST BORINGS 3  2.4 SUBSURFACE CONDITIONS 4  2.4.1 Soil 4  2.4.2 Groundwater 5  3. Field & Laboratory Testing Program 6   GEOTECHNICAL LABORATORY TESTING 6   FIELD RESISTIVITY TESTING 6   FIELD INFILTRATION TESTING 6   LABORATORY THERMAL RESISTIVITY TESTING 6  4. Geotechnical Engineering Recommendations 7  4.1 FOUNDATION DESIGN 7  4.1.1 Foundation Type 7  4.1.2 Foundation Design Criteria – Control House 8  4.1.3 Foundation Design Criteria – GIS Pad 8  4.1.4 Foundation Design Criteria – Pad‐Mounted Equipment 9  4.1.5 Settlement 9  4.1.6 Seismic Design 9  4.1.7 Retaining Walls 9  4.1.8 Permanent Soil Slopes 11  4.2 BACKFILL MATERIALS 11  4.2.1 Compacted Granular Fill 11  4.2.2 Crushed Stone Fill 12  4.2.3 Geotextile 12  4.2.4 Impervious Fill 12  4.2.5 Common Fill 12  4.2.6 Compaction 13    iv  4.3 USE OF ON‐SITE EXCAVATED SOIL 13  5. Construction Considerations 14  5.1 GENERAL 14  5.2 EXCAVATION AND TEMPORARY LATERAL SUPPORT 14  5.3 FOUNDATION CONSTRUCTION 14  5.3.1 Drilled Shafts 14  5.3.2 Shallow Foundation Bearing Surfaces 15  5.4 DEWATERING 15  5.6 EARTHWORK DURING FREEZING WEATHER 15  5.7 FINAL DESIGN REQUIREMENTS 16    Tables  Figures   Appendix A – Test Boring Logs   Appendix B – Geotechnical Laboratory Test Results  Appendix C – Field Resistivity Results  Appendix D – Thermal Laboratory Test Results     List of Tables      Table No.  Title    I Summary of Subsurface Explorations    II Geotechnical Parameters for Foundation Design    III Seismic Design Parameters         List of Figures      Figure No.  Title    1 Project Locus    2 Exploration Location Plan             1. Introduction  1.1 PROJECT DESCRIPTION  Eversource plans to upgrade the existing Station 921 substation in West Barnstable, Massachusetts. To  support Burns & McDonnell’s engineering design for the project, Haley & Aldrich performed subsurface  investigations and field testing to provide the engineering data necessary to design the project.     Our understanding of the project is based on the information included in the Scope of Work document  for “Subsurface Investigation and Geotechnical Report, West Barnstable Substation, Barnstable,  Massachusetts,” dated 12 July 2022 and  the following drawings provided by Burns & McDonnell on 16  February 2023:   Drawing 921‐6200 “West Barnstable Station Foundation Location Plan,” Revision B dated 30  January 2023;   Drawing 921‐6102 “West Barnstable 345kV Station Grading & Drainage Plan,” Revision A dated  December 2022;   Drawing 921‐6036 “West Barnstable 345/115kV – Pad, Pier & Slab Fdn’s w/Anchor Bolts,”  Revision B dated 30 January 2023;   Drawing 921‐6037 “West Barnstable Station Firewall Foundation Details,” Revision B dated 30  January 2023;   Drawing 921‐6038 “West Barnstable Station 345kV Auto Transformer and Oil Containment,”  Revision B dated 30 January 2023; and,   “West Barnstable Station 920 & 921 QP700 Vineyard Wind Interconnect Existing Conditions  Survey,” prepared by SGC Engineering, LLC dated 21 October 2022     The project consists of expanding the substation with new equipment, including a new 345kV Gas  Insulated Switchgear (GIS) and supporting breakers, Control House, 345kV underground transmission  line connections, and associated equipment in a new yard area to be constructed at the northeast  corner of the existing station. Upgrades to the existing substation include a new transformer, relay &  control equipment, and overhead connections to the new substation area. Additionally, new overhead  transmission line structures will be installed as riser structures to support the underground/overhead  transition from the planned new underground 345kV line entering the substation from the south.      Based on the current grading plan, finish yard elevation for the GIS area is at El. 153, approximately at  grade with the existing Station 921.  Existing ground surface elevations within the proposed GIS area  range from El. 149 to El. 174. To accommodate the change in grade required to make a level pad area at  El. 153, two retaining walls are planned. A fill retaining wall will support a 3 to 14 ft grade raise on the  northwest side of the GIS pad area. At the east end of the fill retaining wall there is an approximately 80‐ ft long break before the grading at the site transitions to a cut. This area is planned as an approximately  2.5H:1V soil slope. Beginning at the north end of the GIS pad area and continuing around the east and  south sides, the second retaining wall will support a cut of up to 20 ft.     The site location is shown on the Project Locus, Figure 1.          1.2 PURPOSE AND SCOPE  This report has been prepared for specific application to the Station 921 project and presents subsurface  data and engineering design recommendations based on the information collected from subsurface  explorations performed at the substation.    The scope of work was defined in the document referenced above. The work was performed in general  accordance with the specifications.    The scope of our work included the following:     Planning and monitoring a geotechnical subsurface exploration program;   Performing field testing, tabulating, and analyzing the data;   Laboratory geotechnical and thermal resistivity testing;    Developing geotechnical engineering recommendations based on engineering evaluations; and,   Summarizing our subsurface explorations, engineering evaluations, and recommendations in  this report.  1.3 ELEVATION DATUM  Elevations in this report are in feet and refer to the North American Vertical Datum (NAVD) 1988 vertical  datum. Elevations referenced in this report were interpolated from the existing conditions survey for  West Barnstable Station 920 & 921, prepared by SGC Engineering, LLC, dated 21 October 2022. .     1.4 LIMITATIONS  This report has been prepared for specific application to the Eversource Station 921 project as it is  currently planned. In the event that changes in the nature, design, or location of proposed construction  occurs, the information contained in this report should not be considered valid unless the changes are  reviewed, and this report modified or verified in writing. The information presented in this report is  based upon data obtained from referenced explorations. The nature and extent of variations between  the explorations may not become evident until construction. If variations then appear evident, it will be  necessary to reevaluate the recommendations of this report. This report is prepared for the exclusive  use of the design team in connection with the geotechnical aspects of the project.    The data provided in this report are based solely on the scope of work conducted by Haley & Aldrich and  the sources of information referenced herein. This work was undertaken in accordance with generally  accepted geotechnical engineering practices.    Our work scope did not include an assessment of the presence of oil or hazardous materials at the site,  the characterization of excavated soil or groundwater that may be generated as a result of planned  construction activity, or evaluation of the need to prevent migration of contaminated vapors into nearby  structures.    Our work scope did not include the development of criteria or procedures to minimize the risk of mold  or other biological pollutant infestations in or near any structure.         2. Site & Subsurface Conditions  2.1 GENERAL  Station 921 is located on the south side of Oak Street in West Barnstable, Cape Cod, Massachusetts. The  substation is oriented north‐south, perpendicular to the existing 115‐kV and 23‐kV overhead  transmission lines that pass just north of the site. The substation provides switchgear to distribute the  115‐kV power south and east to the greater Cape Cod area. The substation consists of two enclosed  areas. The northern enclosure contains a control house and switchgear for the incoming 23‐kV overhead  lines. The southern enclosure contains a control house, an autotransformer, switch gear, breakers, and  other supporting equipment to transition the incoming 115‐kV overhead lines.     The site is bounded by a small wetland area preceding Oak Street to the west, a densely wooded area to  the east, residential properties to the north, and Route 6 (Mid‐Cape Highway) to the south.     The existing substation site is relatively flat at approximately El. 152 to El. 153. Ground surface slopes up  at about 2H:1V to the wooded area to the east, which is the site of the planned substation expansion.  This area is generally 10 to 20 ft higher in elevation than the existing station. Beyond the substation  limits to the south, ground surface slopes gently up towards Route 6.      Boulders 2 to 6 ft diameter are scattered around the ground surface and were encountered at depth in  some of the test borings. Around test borings B6 and B7 (southern area of the proposed GIS pad)  numerous boulders are visible at the ground surface. After six attempts to advance test boring B6  beyond boulders at 5 to 6 ft below ground surface, the boring could not be completed. Test boring B14  was offset five times due to boulders encountered at a similar 5 ft depth below ground surface.    2.2 VACUUM EXCAVATION  On 21 October 2022, Moran Environmental Recovery, Randolph, Massachusetts, vacuum excavated the  upper 6 ft of soil at test borings B1, B2, B12, B13, and UG‐9 which are all located either within the  existing substation yard or near a known underground electric duct bank. Test borings were drilled at  the cleared location after vacuum excavation was completed.    2.3 TEST BORINGS  Nineteen test borings (B1, B2, B4 to B16, OH/UG‐6, OH/UG‐7, and UG‐9) were drilled at the site  between 3 and 21 October 2022 and between 7 and 10 November 2022 at the locations shown on  Figure 2.  Due to proximity to nearby boring locations and limitations for test boring access inside the  existing substation, test boring B‐3 was eliminated from the subsurface investigation program. The  explorations were advanced using an ATV‐mounted or truck‐mounted drill rig to depths between 22 and  72 ft below ground surface.  The borings were drilled by Seaboard Drilling, Inc., Chicopee, Massachusetts  and Terracon Consultants, Inc., Manchester, New Hampshire.      The test borings were advanced by standard hollow stem auger (HSA) drilling techniques using 4.25‐in.  O.D. augers.  Soil samples were obtained by driving a standard split‐spoon sampler (1‐3/8‐in. I.D., 2 in.  O.D.) a distance of 24 in. under the impact of a 140‐lb hammer free‐falling 30 in. as specified in ASTM  D1586.  The number of blows required to drive the sampler from 6 to 18 in. of sampling depth is       referred to as the SPT “N” Value (in units of blows per foot) and is used as an indicator of soil density or  consistency.       Borings indicated with lower case letters (i.e. “a, b”) were attempted several times due to refusal on  boulders before the boring was completed to the required depth.     Soil samples were classified according to the Unified Soil Classification System. Refer to Appendix A for  the test boring reports.    Approximate locations of the borings are shown on Figure 2.  Boring locations were estimated by taping  from site features.  Ground surface elevations at test borings were interpolated from the existing  conditions survey.       2.4 SUBSURFACE CONDITIONS  2.4.1 Soil  Subsurface conditions encountered at the explorations are described below.  Refer to the Test Boring  Logs in Appendix A for detailed descriptions.  Soil strata encountered in the explorations include crushed  stone fill (inside the station only), sandy fill, or topsoil and subsoil at the ground surface overlying glacial  deposits.  These strata can generally be described as follows.     Crushed Stone – an approximately 6‐in. thick layer of ¾‐in. size crushed stone covers the ground  surface within the substation.    Topsoil – A thin 2 to 3‐in. thick topsoil layer was observed at borings B5, B8, B9, and B14 to B16.    Subsoil – Subsoil consisting of very loose to medium dense brown and yellow‐brown silty SAND  with gravel (SM), poorly‐graded SAND (SP), or silty SAND (SM). Subsoil was observed at borings  B5, B8 to B10, B14, and B16 directly below the topsoil.    Fill – At B1, B2, and B4, approximately 5 to 7 ft of fill was observed. The fill resembles the natural  material at the site, but appears to be re‐worked. Fill consists of loose to medium dense yellow‐ brown poorly‐graded SAND with gravel. Note B1 and B2 were vacuum‐excavated and the  thickness of fill at these locations is based on observations of the excavation sidewalls and  comparison to nearby borings, such as B4.    Glacial Stratified Deposits – Loose to very dense stratified poorly‐graded SAND (SP), well‐graded  SAND (SW), silty SAND with gravel (SM), silty SAND (SM), poorly‐graded SAND with silt (SP‐SM).  Gravel is present irregularly throughout the deposit. Boulders are common throughout this  deposit. At B14, the boring was offset five times due to refusal on boulders. At B6, the boring was  offset six times due to refusal on boulders at depths between 5 and 6 ft below ground surface.  After these attempts, the boring could not be advanced beyond the boulders in the area of B6.        2.4.2 Groundwater  Groundwater was not observed at any test borings. However, at borings B4, OH/UG‐6, and OH/UG‐7 a  possible perched water table was observed at approximately 15 to 35 ft below ground surface. These  borings are adjacent to the wetland area on the west side of the site.       Groundwater levels will fluctuate with season, precipitation, level in the nearby wetlands and  waterbodies, and nearby construction activity.        3.Field & Laboratory Testing Program GEOTECHNICAL LABORATORY TESTING  The following geotechnical laboratory tests were performed on selected soil samples by Haley & Aldrich,  Inc.:    Grain Size Analysis – six samples (B5‐INF‐1, S3; B7, S5; B12, S3; B13, S2; OH/UG‐6, S5, and OH/UG‐7, S6) were submitted for sieve analysis.  Testing was performed in general accordance with ASTM D422. Percent Passing the #200 Sieve – 21 samples (B2, S5; B4, S10; B5, S5; B7, S7; B8, S8; B9, S5; B10, S8; B11, S6; B12, 25; B13, S4 and S11; B14, S6; B15, S5; B16, S6 and S9; OH/UG‐6, S11 and S15; and UG‐9, S3) were submitted for fines analysis. Testing was performed in general accordance with ASTM D1140. Laboratory test results have been incorporated on the test boring logs in Appendix A and sieve test  reports are in Appendix B.    FIELD RESISTIVITY TESTING  Field resistivity testing was completed at an off‐site location selected by Burns & McDonnell. The testing  was completed on 18 November 2022. Results of field resistivity testing are provided in Appendix C.   FIELD INFILTRATION TESTING  Groundwater was not encountered at any of the test borings. Based on conversations with the Burns &  McDonnell engineering team, a shallow (5 ft deep) well was installed at the preferred location of a  proposed underground stormwater system near B5. A second shallow well (B5‐a) was installed  approximately 5 ft east of this well on 10 November 2022. A third shallow well was installed at OH/UG‐6  on 7 November 2022. On 25 October and 11 November 2022, falling head in‐situ slug tests were  completed at these locations to estimate soil hydraulic conductivity.  The table below presents a summary of estimated hydraulic conductivity ranges for the natural soil  based on the results of field infiltration testing.   Location ID Estimated Hydraulic Conductivity (k, cm/sec)  Field Permeability Test  B5_INF‐1 1 x 10‐2  B5‐a_INF‐2 1 x 10‐3  OH/UG‐6_INF‐3 5 x 10‐3  LABORATORY THERMAL RESISTIVITY TESTING  Four samples (two from OH/UG‐6 and two from UG‐9) were submitted to Geotherm USA, Cypress, TX  for laboratory thermal resistivity testing. Results of thermal analysis are included in Appendix D.        4. Geotechnical Engineering Recommendations  4.1 FOUNDATION DESIGN  Table II provides parameters for use in LPile and/or MFAD to design drilled shaft foundations for  overhead structures at each boring, including ultimate end bearing and side friction values for design of  axial loading, and recommended criteria for lateral capacity for the soil conditions at Station 921. Note  that the values provided on Table II are ultimate, and a factor of safety was not applied to estimate the  end bearing and side friction capacities.  We have assumed that foundation concrete having a minimum  compressive strength (fc’) of 4,000 pounds per square inch (psi) will be used for design.    Additional foundation design recommendations are also provided below based on the anticipated  foundation types for the planned structures.     4.1.1 Foundation Type  The following sections provide foundation design recommendations for proposed equipment, including  the transformer, GIS Pad, Control House, Firewalls, and miscellaneous pad‐mounted equipment.     For all foundations, the following general recommendations are provided:      Design foundations to bear on undisturbed Glacial Stratified or Moraine Deposits. Footings  bearing on these deposits could be designed for a maximum net allowable bearing pressure of 3  kips per square foot (ksf).  Mats for station equipment (not including the GIS Pad) may be  designed using a coefficient of subgrade reaction of 20 pounds per cubic inch (pci).   Topsoil, Subsoil, and Fill are not suitable materials for foundation bearing and should be  removed (over‐excavated) within a 1H:1V splay below the foundation (bearing zone) if present  at the design foundation bearing level. Over‐excavations to remove these materials should be  backfilled with Compacted Granular Fill or with Crushed Stone placed over a filter fabric  separating the stone from the underlying natural soil.    The recommended allowable bearing pressure is for footings 3 ft or larger in width.  For footings  smaller than 3 ft, the maximum net allowable bearing pressure should be proportionally  reduced by the ratio of the actual footing width to 3 ft.    Design for a minimum footing width of 18 in.      For loading combinations that include transient loads such as seismic and wind loads, the  maximum net allowable bearing pressure may be increased by 33 percent.     Locate foundations to bear below a 1.5:1V slope from the bottom of existing foundations, new  or existing utility pipes, pits, or other planned localized excavations.   Where possible, locate new footings to bear at the same level as existing or new adjacent  footings.    The design frost depth is 4 ft below adjacent final grades.   Refer to the construction considerations section for details regarding subgrade preparation for  foundations.        4.1.2 Foundation Design Criteria – Control House  We understand the Control House is a pre‐fabricated structure that is typically supported on small  diameter circular piers bearing a minimum of 4 ft below ground surface.  The piers should be deepened  as necessary to extend through unsuitable soils and bear on Glacial Stratified or Moraine Deposits.   Alternately, if the piers are installed with an open excavation as described below, unsuitable soils may  be removed and replaced with Compacted Granular Fill.    We anticipate piers will be installed either as cast‐in‐place in pre‐augered holes or as pre‐cast or  concrete‐filled tubes placed in an open excavation and then backfilled. It may be difficult to keep pre‐ augered holes open and therefore concrete should be installed as soon as possible after excavation. A  temporary form could be used to keep the augered hole open before concrete is poured. For open cut  excavations, the concrete pier should be backfilled in lifts with Compacted Granular Fill.     Table II provides parameters for use in LPile and/or MFAD to analyze the standard pier support design  for the soil conditions at Station 921. The parameters in Table II apply to undisturbed soils encountered  in the borings. For piers designed as shallow foundations, the recommendations provided in Section  4.1.1 above should be used.     For piers installed as open‐cut and backfilled with Compacted Granular Fill (CGF), the following  parameters should be used for analysis of the pier in LPile and/or MFAD.      Total Unit Weight – 115 pcf   Effective Unit Weight (below ground water) – 52.6 pcf   Friction Angle – 30 degrees   Soil Modulus (k) Above Groundwater – 25 pci   Soil Modulus (k) Below Groundwater – 20 pci   Deformation Modulus (Ep) – 300 psi   Ultimate End Bearing – 6 ksf     4.1.3 Foundation Design Criteria – GIS Pad  We understand the GIS will be supported on a 3‐ft thick reinforced concrete mat with dimensions of  approximately 108 ft x 93 ft.  Settlement tolerance is low for the pad, with maximum ½‐in. total and ¼‐ in. differential settlement recommended by GIS vendors. Although actual loads are not known at this  time, we understand the GIS equipment is relatively light. Based on the available information, the GIS  pad (without equipment) will apply a gross bearing pressure of approximately 0.5 kips per sq. foot (not  considering net effects of stress reduction from soil removed to construct the mat).     Unsuitable soils (existing fill, topsoil and subsoil) should be removed from the mat bearing zone until  undisturbed Glacial Stratified are encountered.  Boulders found at the subgrade level should be  removed. Backfill overexcavations with crushed stone placed over geotextile fabric.  Refer to Section 5  for details regarding subgrade preparation.     Design the mat using a coefficient of subgrade reaction of 10 pci. The mat should bear on a minimum  12‐in. thick layer of ¾‐in. size crushed stone, underlain by a geotextile fabric, placed over natural Glacial  Stratified Deposits. Stone should be placed to a minimum depth of 4 ft below finished grade for frost  protection. Refer to Section 5 for additional subgrade preparation recommendations.         4.1.4 Foundation Design Criteria – Pad‐Mounted Equipment  We understand general substation yard equipment is typically supported on concrete slabs bearing  directly on undisturbed soils. Placement of a minimum 6‐in. thick layer of ¾‐in. size crushed stone,  underlain by a geotextile fabric, would help to protect the subgrade prior to placing concrete for the  slab.    Unsuitable soils should be removed from the slab bearing zone until undisturbed Glacial Stratified or  Moraine Deposits are encountered.  Backfill overexcavation with crushed stone. It is possible excavated  subsoil could be re‐used as compacted backfill below pad‐mounted equipment foundations provided  the equipment can withstand some frost heave. If equipment is sensitive to movement, then  recommendations provided above for the GIS Building mat should also be followed for pad‐mounted  equipment.    4.1.5 Settlement  Except as noted above for the GIS Pad, foundations designed for the recommended footing bearing  pressures are anticipated to settle 1 in. or less.  Differential settlement between adjacent foundations is  estimated to be 0.5 in. or less.  Most of the settlement will occur during construction as load is applied.      4.1.6 Seismic Design  Seismic design parameters were calculated in accordance with the 9th Edition of the State of  Massachusetts Building Code 780 CMR (MABC) and are shown on Table III. The site structural design  should address seismic design considerations, including distribution of forces at the foundation level.    The soils at the site do not appear to be liquefaction susceptible.    4.1.7 Retaining Walls  The foundation design criteria provided in Section 4.1.1 above should be applied to design of cast‐in‐ place concrete retaining walls.      If mechanically stabilized earth (MSE) walls are considered, they are typically founded at about 2 ft  below finish grade; however deeper embedment will be needed (for bearing capacity/global stability) if  there is a downhill slope at the base of the wall.  The embedment depth will depend on the grading  plan, but might be on the order of 2 to 4 ft below ground surface at the base of the wall.  Backfill type  behind MSE walls is typically specified by the wall vendor, but should be free‐draining and may have  similar properties to Compacted Granular Fill (refer to Section 4.2).  The wall designer should consider  the location of equipment pads and possible future substation buildouts when designing MSE walls as  the geogrid reinforcement zone may conflict with future development.     At walls in cut areas, use of permanent soil nail walls with concrete facing may be considered provided  that there is sufficient space for soil nails to remain within the property limits.  Easements may be  required where soil nails extend beyond the property line.  Soil nails should be aligned to avoid damage  to existing buried utilities that may be located behind the wall.       Foundation wall drains are recommended.  Drains should be installed to provide gravity flow of  accumulated water behind the wall. At cast‐in‐place concrete walls, the drains should be contained  within a stone layer, wrapped in filter fabric, and continuing up the full height of the wall. Cleanouts  should be included at intervals along the wall.     Based on the preliminary grading plan, fill retaining wall heights will be up to 14 ft and cut retaining wall  heights will be up to 20 ft. Final site grades will determine the required wall height.      4.1.7.1 Lateral Earth Pressures  Retaining walls may be designed using the following at‐rest, active, and seismic lateral earth pressures.  The recommended parameters assume the retaining wall is drained full height, backfill consists of  Compacted Granular Fill (properties provided in Section 4.1.2) or on‐site natural Glacial Deposits  (properties provided on Table 2), and there is no surcharge or inclination of the ground surface behind  wall.      At‐Rest Lateral Earth Pressure – Equivalent fluid unit weight equal to 60 pounds per square  foot (psf) per foot height of wall.   Active Lateral Earth Pressure – Equivalent fluid unit weight equal to 40 psf per foot height of  wall.    Seismic Lateral Earth Pressure – 3H2 pounds per lineal foot of wall (total force to be  distributed as an inverse triangle over the height of the wall, where H is the height of wall  measured as the difference in elevation of finished ground surface in front of and behind  the wall).   For seismic loading conditions, walls should be designed to resist static plus seismic earth pressures.     4.1.7.2 Passive Earth Pressure Resistance  We recommend ignoring passive earth pressure resistance in front of walls. Grade in front of the wall  can change over time, therefore the design thickness of soil fill in front of the wall providing the passive  resistance is not reliable long‐term. However, we understand the design team may elect to use passive  pressure resistance in stability calculations for sliding and overturning. We recommend including a long‐ term maintenance plan for walls designed using passive earth pressure resistance.  The plan should  require scheduled inspection and maintenance of the backfill in front of the wall to maintain the design  assumptions.    If passive earth pressure resistance is included in the analysis, the net (passive minus active) lateral  resistance provided by the compacted fill placed in front of the wall can be estimated using an  equivalent fluid unit weight of 200 pcf. This value assumes that backfill within 5 ft laterally against the  wall is systematically compacted in lifts. The top of the assumed passive zone should be a minimum 2‐ft  below the top of the adjacent soil or backfill surface.     4.1.7.3 Resistance to Lateral Loads  For cast‐in‐place or pre‐cast concrete retaining walls, lateral loads may be resisted using a combination  of friction between footings bases and underlying soils. The resistance to lateral loads provided by       friction between footing concrete and underlying natural Glacial Deposits or CGF should be calculated  using a coefficient of friction (ultimate) equal to the following:     Cast‐in‐place concrete – 0.35   Pre‐cast concrete – 0.30      Such walls should be designed with a minimum factor of safety equal to 1.5 for both sliding and  overturning.    4.1.7.4 Global Stability  Note that the global stability of the selected wall system should be checked prior to construction.   Global stability check of the retaining wall system is beyond our current scope of services.    4.1.8 Permanent Soil Slopes  Permanent cut and fill slopes in glacial deposits should be 3H:1V, or flatter. Special slope protection  does not appear necessary. Permanent soil cut and fill slopes may be steepened to 2H:1V if covered by  riprap. Riprap could be made from bedrock obtained from local quarries and/or boulders and large  cobbles removed during site earthwork if a significant cut is planned to lower grade in the substation  expansion area. Slope areas should be evaluated for potential seepage breakout on a case by case basis  once the final grading plan has been completed.      4.2 BACKFILL MATERIALS  4.2.1 Compacted Granular Fill  Granular fill is recommended to backfill foundation excavations.  Granular fill should be placed  in maximum 12‐in. thick lifts and compacted to at least 95 percent of the maximum dry density  determined by ASTM D1557.  In confined areas, use maximum 6‐in. thick lifts.  Compaction  equipment in confined areas may consist of hand‐guided vibratory equipment or mechanical  tampers.  Granular fill should consist of sandy gravel or gravelly sand, free of organic material,  environmental contaminants, snow, ice, frozen soil, or other unsuitable material, and be well‐ graded within the following limits:    U.S. Standard  Sieve Size  Percent Finer  by Weight     6 in. * 100  No. 4 30‐80  No. 40 10‐50  No. 200 0‐8    *use a maximum 3‐in. size for fill placed within 6 in. of concrete slabs or footings         4.2.2 Crushed Stone Fill  Crushed Stone may be used below footings or mats as required to replace frost‐susceptible soils  or protect bearing surfaces.  Crushed Stone should consist of No. 6 crushed stone (3/4‐in. size) in  accordance with Massachusetts Highway Department (MHD) Standard Specification Designation  M2.01.4.  Where crushed stone is used it should be underlain by a non‐woven medium‐duty  geotextile filter.  Crushed stone should be placed in maximum 12‐in. thick lifts compacted with at  least four coverages using heavy vibratory compaction equipment.    4.2.3 Geotextile  A filtration‐type geotextile is recommended between crushed stone and surrounding soil, which  allows for transmission of water while working to keep the crushed stone free from fine  particles.  It should consist of Mirafi Construction Products 160N, or equivalent.    4.2.4 Impervious Fill  Impervious fill is recommended as the final 12 in. thickness of fill at ground surface above  foundation and retaining wall backfill.  Impervious fill is not required where the area above the  foundation wall backfill has pavement or a floor slab.  Impervious fill should consist of common  fill (see below) with a minimum 20 percent passing a No. 200 sieve. In general, the natural Glacial  Deposits found at the site are not suitable for use as impervious fill due to typically very low fines  content. However, near borings B8 and B9 the natural Glacial Deposits have higher fines content  and may be suitable for use as Impervious Fill. Based on the preliminary grading plan, these  materials will be excavated during earthwork to lower the site grade and could be available for  reuse on‐site as Impervious Fill.     4.2.5 Common Fill  Common Fill should consist of uncontaminated mineral sandy or gravelly soil, predominantly  free from clay, organic matter, plastic, metal, wood, ice, snow, debris or other deleterious  material and should have the characteristic that it can be readily placed and compacted.   Common Fill imported to the site should have a maximum of 80 percent passing the No. 40 sieve  and a maximum of 30 percent finer than the No. 200 sieve.  The maximum particle size should  be the smaller of 2/3 the lift thickness or 6 in.  Silty common fill soils will require moisture  control during placement and compaction. Natural Glacial Deposits found at the site are suitable  for use as common fill.            4.2.6 Compaction  Recommended compaction requirements are as follows:    Location  Minimum Compaction Requirements    To Backfill  Excavations for Foundations, including  Excavations for Removal of Unsuitable Soils    95%    As final layer at ground surface   92%  Above foundation and retaining walls  (Impervious Fill )           Minimum compaction requirements refer to percentages of the maximum dry density  determined in accordance with ASTM D1557.     4.3 USE OF ON‐SITE EXCAVATED SOIL   Excavation is expected to be in crushed stone, topsoil, subsoil, fill, and glacial deposits.  These materials  may be reused on‐site as needed for general site filling, but are generally not suitable for use as  Compacted Granular Fill (CGF).  Oversize rocks, boulders, and cobbles (greater than 8‐in. dia. or greater  than 2/3 of the loose lift thickness) should be removed prior to reusing. It may be possible to reuse  natural glacial deposits as CGF, however careful control of moisture, protection of stockpiles (from  precipitation and freezing), and protection of compacted subgrades will be required as the glacial  deposits will be easily susceptible to disturbance once placed.           5. Construction Considerations  5.1 GENERAL  This section provides comments related to foundation construction, earthwork, and other geotechnical  aspects of the project.  It will aid those responsible for the preparation of contract plans and  specifications and those involved with construction monitoring.  Contractors must evaluate potential  construction problems based on their own knowledge and experience in the area and based on similar  localities, taking into account their own proposed construction methods and procedures.    5.2 EXCAVATION AND TEMPORARY LATERAL SUPPORT  Excavation for foundations is anticipated to be up to 20 ft deep and possibly deeper depending on the  final grading plan for the GIS Building addition area.  Excavation will be in crushed stone, topsoil, subsoil,  fill, Glacial Stratified Deposits, and Moraine Deposits.     Excavation geometry should conform to OSHA excavation regulations contained in 29 CFR Part 1926,  latest revision.  Temporary, dewatered soil slopes of 1.5H:1V appear appropriate but should be  confirmed during construction based on conditions at the time of excavation.      It appears that open cuts are feasible; however, care should be taken when excavating near existing  equipment pads and foundations.  Excavation should not be performed below a 1.5H:1V zone beneath  existing foundations, cable trenches, and below‐grade utilities.  If this geometry cannot be maintained,  underpinning or steel sheetpiles may be required to support the utility or foundation during the work.  If  sheeting is utilized, adjacent structures must be monitored for movement and care should be exercised  by the Contractor since vibratory loads may induce settlement of these structures.      5.3 FOUNDATION CONSTRUCTION  5.3.1 Drilled Shafts  Drilled shaft foundations constructed for the new transmission towers will be advanced to bear in the  Moraine Deposits and Glacial Stratified Deposits.    Bedrock is not anticipated to be encountered; however, cobbles and boulders are expected to be  present at most locations. There may be instances where boulders may be encountered but not noted  on test boring logs as foundation diameters will be much larger than test boring diameters. The depths  and limits of boulders present beyond test boring limits are not known. Foundation contractors should  have the proper tools available to remove boulders as they are encountered.  Foundations should not  bear partially on a boulder and partially on the adjacent ground.    Temporary casing and possibly drilling fluid may be required to maintain open drill holes in soils.  Running sands may be encountered where foundation excavations are advanced below the  groundwater table, and should be mitigated with drilling mud or other means as necessary.             It is anticipated that foundations will be advanced using a combination of augers and core barrels (used  to advance through boulders). Drilling through cobbles and boulders will result in foundation diameters  larger than those expected, and this should be considered when estimating concrete volumes.    5.3.2 Shallow Foundation Bearing Surfaces  Subgrades at excavations for foundations will consist of Glacial Stratified Deposits or Moraine Deposits.   Foundation subgrades should be compacted with at least four coverages using a vibratory plate  compactor with a minimum 5,000 lbs. dynamic force.  Similar compaction should be performed on  subgrades prior to placing Compacted Granular fill or Crushed Stone where overexcavation is required. If  soft or unsuitable material is encountered at exposed subgrades, remove the unsuitable material, and  then backfill with Compacted Granular Fill or Crushed Stone until a firm and stable surface is achieved.    We recommend that excavation for footings be conducted in a manner that minimizes disturbance to  soil bearing surfaces.  Preferably, final excavation should be made with equipment having a smooth‐ edged bucket.  Care should be taken to prevent surface water from collecting on exposed soil bearing  surfaces.  Worker and equipment traffic on earing surfaces should be minimized.     In the event that a boulder becomes partially exposed at the footing bearing level, one of the following  options should be utilized:  1) remove the boulder, and fill the void with lean concrete, or 2) remove a  portion of the boulder sufficient to provide placement of 6 in. of ¾‐in. size crushed stone beneath the  footing over the boulder.  Each such encounter should be resolved individually in the field.    The glacial soils will be easily softened and susceptible to disturbance from construction activities when  wet.  To avoid this disturbance, the contractor should form and pour concrete for footings on the same  day as excavation.  If this is not possible, bearing surfaces should be protected by a minimum 6‐in.  thickness of compacted Crushed Stone over a geotextile filter.    5.4 DEWATERING   Final excavation, subgrade preparation, filling, foundation construction, and utility construction should  be conducted "in the dry".  Excavation for shallow foundations and buried utilities is not anticipated to  extend below groundwater level.  Construction dewatering to control accumulation of precipitation and  surface water runoff into excavations may be required.  Filtered sumps appear feasible for dewatering  excavations.     5.6 EARTHWORK DURING FREEZING WEATHER  Precautions should be taken if work takes place while temperatures are below freezing.  Frozen soil or  soil containing snow or ice should not be used as compacted fill.  Placement of fill should not be  conducted when air temperatures are below freezing.  Soil bearing surfaces below foundations must be  protected against freezing, before and after placement of concrete.  Frost protection should be provided  as soon as possible after foundations are constructed.    Fill should not be placed on snow, ice, or frozen subgrades.  At the end of each day's operations, the last  lift of placed fill should be rolled by a smooth‐wheeled roller to eliminate ridges of uncompacted soil to  aid runoff and drainage.          5.7 FINAL DESIGN REQUIREMENTS  The results of the subsurface investigation discussed in this report and the recommendations provided  herein need to be reviewed and revised as necessary based on the final site layout. Detailed  geotechnical criteria (e.g. drainage systems, retaining walls, construction considerations, and other  geotechnical related items) may change based on the final proposed site design.     HALEY & ALDRICH, INC. Page 1 of 1 TABLE 1 SUMMARY OF SUBSURFACE EXPLORATIONS  EVERSOURCE QP700 PROJECT ‐ STATION 921 ADDITIONS WEST BARNSTABLE, MASSACHUSETTS B1 152 32.0 0.5 ‐‐‐‐7> 24.5 ‐‐‐‐ B2 152 47.5 0.5 ‐‐‐‐7> 40 ‐‐‐‐ B4 152 47.0 ‐‐‐‐‐‐5> 42.0 15.0 137.0 B5 164 49.0 ‐‐0.2 3.8 ‐‐> 45.0 ‐‐‐‐ B6‐a‐b‐c‐d‐e 160 5.0 ‐‐0.5 ‐‐‐‐> 5.5 ‐‐‐‐ B7 174 32.0 ‐‐0.5 ‐‐‐‐>31.5 ‐‐‐‐ B8 172 32.0 ‐‐0.3 6.7 ‐‐> 25.0 ‐‐‐‐ B9 169 32.0 ‐‐0.2 4.8 ‐‐> 27.0 ‐‐‐‐ B10 148 32.0 ‐‐‐‐2 ‐‐> 30.0 ‐‐‐‐ B11 140 32.0 ‐‐‐‐‐‐‐‐> 32.0 ‐‐‐‐ B12 148 32.0 ‐‐‐‐‐‐‐‐> 32.0 ‐‐‐‐ B13 150 72.0 ‐‐‐‐‐‐‐‐> 72.0 ‐‐‐‐ B14‐a‐b‐c‐d 169 50.0 ‐‐0.2 4.8 ‐‐> 45.0 ‐‐‐‐ B15 168 50.0 ‐‐0.2 ‐‐‐‐> 49.8 ‐‐‐‐ B16 150 50.0 ‐‐0.3 5.7 ‐‐> 44.0 ‐‐‐‐ OH/UG‐6 140 72.0 ‐‐0.5 ‐‐‐‐> 71.5 35.0 105.0 OH/UG‐7 147 72.0 ‐‐0.5 ‐‐‐‐> 71.5 23.0 124.0 UG‐9 140 22.0 ‐‐‐‐‐‐‐‐> 22.0 ‐‐‐‐ NOTES: 1. "‐‐" indicates not encountered or not known ">" indicates greater than (strata not penetrated) 2. Elevations are in feet and reference NAVD88. 3. Ground surface elevations for explorations were estimated from the survey plan titled "West Barnstable Station 920 & 921, QL700 Vineyard Wind Interconnect, Existing Conditions Survey, Barnstable, Massachusetts", prepared by SGC Engineering, LLC, dated 21 October 2022. 4. Groundwater observed at B4, OH/UG‐6, and OH/UG‐7 appears to be perched and related to the nearby wetland. WATER LEVEL (FT) DEPTH  (FT) ELEV. (FT) EXPLORATION  IDENTIFICATION TOTAL  DEPTH  (FT) THICKNESS OF STRATA (FT) GRAVEL ESTIMATED  GROUND  SURFACE  ELEVATION (FT) GLACIAL STRATIFIED  DEPOSITSFILLSUBSOILTOPSOIL 12/14/2022 HALEY & ALDRICH, INC.TABLE IIGEOTECHNICAL PARAMETERS FOR FOUNDATION DESIGNEVERSOURCE QP700 PROJECT ‐ STATION 921 ADDITIONSWEST BARNSTABLE, MASSACHUSETTSBoring NumberB1 B2 B3 B4 B5 B6-a-b-c-d-e B7 B8 B9 B10 B11 B12G.S. Elevation152 152 152 164 160 174 172 169 148 140 148Recommended Design Water Level (ft)20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0Depth of Layer 1 (ft)0.0-7.0 0.0-7.0 0.0-5.0 0.0-4.0 0.0-2.0 0.0-20.0 0.0-7.0 0.0-2.0 0.0-2.0 0.0-2.0 0.0-32.0Soil/Rock Layer 1VACUUM EXCAVATEDVACUUM EXCAVATEDNOT USED Loose Fill SubsoilGlacial Stratified LooseGlacial Stratified LooseSubsoil Subsoil SubsoilGlacial Stratified LooseGlacial Stratified MDTotal Unit Weight (pcf) 110 110 -- 110 115 120 120 115 115 115 120 120Effective Unit Weight (pcf) BGW 48 48 -- 48 53 58 58 53 53 53 58 58Friction Angle (degrees) 28 28 -- 28 26 30 30 26 26 26 30 32Shear Strength (psf) 0 0 -- 0 0 0 0 0 0 0 0 0Soil-Modulus, k (pci) AGW2525--252525252525252560Soil-Modulus, k (pci) BGW2020--202020202020202040e50------------------------Rock Mass Modulus, Em (psi)-- -- -- -- -- -- -- -- -- -- -- --RQD (%)-- -- -- -- -- -- -- -- -- -- -- --UCS (psi)------------------------Ultimate Side Friction (tsf)----------0.500.50------0.501.00Ultimate End Bearing (tsf)----------3.003.00------3.005.00Depth of Layer 2 (ft)7.0-15.0 7.0-13.55.0-20.0 4.0-17.5 2.0-4.0 20.0-32.0 7.0-32.0 2.0-10.0 2.0-5.0 2.0-32.0Soil/Rock Layer 2Glacial Stratified LooseGlacial Stratified MDNOT USEDGlacial Stratified LooseGlacial Stratified MDGlacial Stratified MDGlacial Stratified MDGlacial Stratified MDGlacial Stratified LooseGlacial Stratified LooseGlacial Stratified MDNOT USEDTotal Unit Weight (pcf)120120--120120120120120120120120--Effective Unit Weight (pcf) BGW5858--5858585858585858--Friction Angle (degrees)3032--3032323232303032--Shear Strength (psf)00--00000000--Soil-Modulus, k (pci) AGW2560--2560606060252560--Soil-Modulus, k (pci) BGW2040--2040404040202040--e50------------------------Rock Mass Modulus, Em (psi)-- -- -- -- -- -- -- -- -- -- -- --RQD (%)-- -- -- -- -- -- -- -- -- -- -- --UCS (psi)------------------------Ultimate Side Friction (tsf)0.501.00--0.501.001.001.001.000.500.501.00--Ultimate End Bearing (tsf)3.005.00--3.005.005.005.005.003.003.005.00--Depth of Layer 3 (ft)15.0-23.5 13.5-30.020.0-25.0 17.5-39.0 4.0-6.010.0-32.0 5.0-32.0Soil/Rock Layer 3Glacial Stratified MDGlacial Stratified LooseNOT USEDGlacial Stratified MDGlacial Stratified LooseGlacial Stratified DenseNOT USED NOT USEDGlacial Stratified MDGlacial Stratified MDNOT USED NOT USEDTotal Unit Weight (pcf)120120--120120125----120120----Effective Unit Weight (pcf) BGW5858--585863----5858----Friction Angle (degrees)3230--323034----3232----Shear Strength (psf)00--000----00----Soil-Modulus, k (pci) AGW6025--6025225----6060----Soil-Modulus, k (pci) BGW4020--4020125----4040----e50------------------------Rock Mass Modulus, Em (psi)-- -- -- -- -- -- -- -- -- -- -- --RQD (%)-- -- -- -- -- -- -- -- -- -- -- --UCS (psi)------------------------Ultimate Side Friction (tsf)1.000.50--1.000.502.00----1.001.00----Ultimate End Bearing (tsf)5.003.00--5.003.0010.00----5.005.00----Depth of Layer 4 (ft)23.5-32.0 30.0-47.525.0-47.0 39.0-49.0Soil/Rock Layer 4Glacial Stratified LooseGlacial Stratified MDNOT USEDGlacial Stratified DenseGlacial Stratified MDNOT USED NOT USED NOT USED NOT USED NOT USED NOT USED NOT USEDTotal Unit Weight (pcf)120120--125120--------------Effective Unit Weight (pcf) BGW5858--6358--------------Friction Angle (degrees)3032--3432--------------Shear Strength (psf)00--00--------------Soil-Modulus, k (pci) AGW2560--22560--------------Soil-Modulus, k (pci) BGW2040--12540--------------e50------------------------Rock Mass Modulus, Em (psi)-- -- -- -- -- -- -- -- -- -- -- --RQD (%)-- -- -- -- -- -- -- -- -- -- -- --UCS (psi)------------------------Ultimate Side Friction (tsf)0.501.00--2.001.00--------------Ultimate End Bearing (tsf)3.005.00--10.005.00--------------Bottom of Exploration (ft)32.047.5--47.049.06.032.032.032.032.032.032.0Notes:1. Elevations are in feet and reference NAVD88. Elevations are estimated using Massachusetts Online GIS MassMapper. 2. The strata thicknesses and depths noted on this table are presented for use as input for the Lpile Program and some layers may include more than one stratum. Refer to logs of test borings for more detailed information regarding subsurface conditions. 3. Recommended design water level is based on measured depth to groundwater in the borehole, nearby surface water features, readings at nearby boreholes, topography, and soil conditions. Boring Removed from Program12/19/2022 HALEY & ALDRICH, INC.TABLE IIGEOTECHNICAL PARAMETERS FOR FOUNDATIONEVERSOURCE QP700 PROJECT ‐ STATION 921 ADDWEST BARNSTABLE, MASSACHUSETTSBoring NumberG.S. ElevationRecommended Design Water Level (ft)Depth of Layer 1 (ft)Soil/Rock Layer 1Total Unit Weight (pcf)Effective Unit Weight (pcf) BGWFriction Angle (degrees)Shear Strength (psf)Soil-Modulus, k (pci) AGWSoil-Modulus, k (pci) BGWe50Rock Mass Modulus, Em (psi)RQD (%)UCS (psi)Ultimate Side Friction (tsf)Ultimate End Bearing (tsf)Depth of Layer 2 (ft)Soil/Rock Layer 2Total Unit Weight (pcf)Effective Unit Weight (pcf) BGWFriction Angle (degrees)Shear Strength (psf)Soil-Modulus, k (pci) AGWSoil-Modulus, k (pci) BGWe50Rock Mass Modulus, Em (psi)RQD (%)UCS (psi)Ultimate Side Friction (tsf)Ultimate End Bearing (tsf)Depth of Layer 3 (ft)Soil/Rock Layer 3Total Unit Weight (pcf)Effective Unit Weight (pcf) BGWFriction Angle (degrees)Shear Strength (psf)Soil-Modulus, k (pci) AGWSoil-Modulus, k (pci) BGWe50Rock Mass Modulus, Em (psi)RQD (%)UCS (psi)Ultimate Side Friction (tsf)Ultimate End Bearing (tsf)Depth of Layer 4 (ft)Soil/Rock Layer 4Total Unit Weight (pcf)Effective Unit Weight (pcf) BGWFriction Angle (degrees)Shear Strength (psf)Soil-Modulus, k (pci) AGWSoil-Modulus, k (pci) BGWe50Rock Mass Modulus, Em (psi)RQD (%)UCS (psi)Ultimate Side Friction (tsf)Ultimate End Bearing (tsf)Bottom of Exploration (ft)B13 B14-a-b-c-d B15B16OH/UG-6 OH/UG-7UG-915016916815014014714020.020.020.020.020.020.020.00.0-8.00.0-5.00.0-5.00.0-6.00.0-2.0 0.0-25.0 0.0-15.0Glacial Stratified MDSubsoilGlacial Stratified LooseSubsoilGlacial Stratified LooseGlacial Stratified LooseGlacial Stratified Loose120115120115120120120585358535858583226302630303000000006025252525252540202020202020--------------------------------------------------------1.00--0.50--0.500.500.505.00--3.00--3.003.003.008.0-15.0 5.0-18.5 5.0-42.0 6.0-42.0 2.0-50.0 25.0-40.0 15.0-22.0Glacial Stratified DenseGlacial Stratified MDGlacial Stratified MDGlacial Stratified MDGlacial Stratified MDGlacial Stratified MDGlacial Stratified MD12512012012012012012063585858585858343232323232320000000225606060606060125404040404040--------------------------------------------------------2.001.001.001.001.001.001.0010.005.005.005.005.005.005.0015.0-40.0 18.5-25.0 42.0-50.0 42.0-50.0 50.0-72.0 40.0-72.0Glacial Stratified MDGlacial Stratified LooseGlacial Stratified DenseGlacial Stratified DenseGlacial Stratified DenseGlacial Stratified DenseNOT USED120120125125125125--585863636363--323034343434--000000--6025225225225225--4020125125125125----------------------------------------------------------1.000.502.002.002.002.00--5.003.0010.0010.0010.0010.00--40.0-72.0 25.0-50.0Glacial Stratified DenseGlacial Stratified MDNOT USED NOT USED NOT USED NOT USED NOT USED125120----------6358----------3432----------00----------22560----------12540------------------------------------------------------------------2.001.00----------10.005.00----------72.050.050.050.072.072.022.0Notes:1. Elevations are in feet and reference NAVD88. Elevations are estimated using Massachusetts Online GIS MassMapper. 2. The strata thicknesses and depths noted on this table are presented for use as input for the Lpile Program and some layers may include more than one stratum. Refer to logs of test borings for more detailed information regarding subsurface conditions. 3. Recommended design water level is based on measured depth to groundwater in the borehole, nearby surface water features, readings at nearby boreholes, topography, and soil conditions. 12/19/2022 Page 1 of 1TABLE II SEISMIC DESIGN CRITERIA EVERSOURCE QP700 PROJECT STATION 921 ADDITIONS 661 OAK STREET, WEST BARNSTABLE, MA Site Class D Peak Ground Acceleration SS (short period)0.162 g S1 (1-second period)0.049 g Site Coefficients FA 1.6 FV 2.4 Maximum Earthquake Spectral Response Acceleration SMS (short period)0.259 g SM1 (1-second period)0.118 g Design Spectral Response Acceleration SDS (short period)0.173 g SD1 (1-second period)0.078 g Notes: 1. Criteria based on requirements of MA Building Code, 9th Edition 780 CMR Section 16, including ASCE 7-16. Item Recommended Parameter HALEY & ALDRICH, INC. \\haleyaldrich.com\share\CF\Projects\0206317\Deliverable\01_West Barnstable\HAI-QP700-Station 921Table 3 Seismic.xls APRIL 2009 APPROXIMATE SCALE: 1 INCH = 2,000 FEET 41°41'13"N, 70°20'59"W FIGURE 1MAP SOURCE: USGS 206317-0-LOCUS HALEYALDRICH\JBUCHANONOCTOBER 2022 SITE COORDINATES: PROJECT LOCUS EVERSOURCE QP700 PROJECT STATION 921 ADDITIONS 661 OAK STREET, WEST BARNSTABLE, MASSACHUSETTS B8 B6-a-b-c-d-eXX X X X XXXXXXXXXXXXXXX X X X XXXXX XB7 B14-a-b-c-d B5_INF-1 B1 B2 B13 B12 B16 B15 B9 B10 B11UG-9 B4 OH/UG-7 OH/UG-6 \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0206317\CAD\2022-1027_AS DRILLED ELP WEST BARNSTABLE.DWGBUCHANON, JENNIFER N.HA-FIG-A-P2/23/2023 5:52 AM Sheet:Printed:Saved by:FIGURE 2 EVERSOURCE QP700 PROJECT STATION 921-ADDITIONS 661 OAK STREET, WEST BARNSTABLE, MASSACHUSETTS EXPLORATION LOCATION PLAN SCALE: AS SHOWN OCTOBER 2022 0 50 100 SCALE IN FEET LEGEND APPROXIMATE LOCATION OF EXPLORATION PERFORMED BETWEEN 2 AND 21 OCTOBER 2022 BY SEABOARD DRILLING, INC., CHICOPEE, MA AND BY TERRACON CONSULTANTS, INC. BETWEEN 7 AND 10 NOVEMBER 2022. NOTES 1. PROPOSED SITE LAYOUT TAKEN FROM DRAWING 921-6102 "WEST BARNSTABLE 345KV STATION GRADING & DRAINAGE PLAN, CIVIL PLAN AND DETAILS", REVISION A DATED DECEMBER 2022. LIMITS OF PROPOSED PERIMETER FENCE PROPOSED FILL RETAINING WALL PROPOSED TRANSFORMER PROPOSED GIS PAD PROPOSED CONTROL HOUSE PROPOSED CUT RETAINING WALL      APPENDIX A    TEST BORING LOGS  7.0 9.0 10.0 12.0 15.0 17.0 S112 S212 S317 10548 6354 3576 151.50.5 145.07.0 SM SM SM -GRAVEL- Note: Boring vacuum-excavated to 6 ft below ground surface to clear utilities prior to drilling. -VACUUM EXCAVATED / FILL- Loose red-gray silty SAND with gravel, no odor, moist Similar to S1 Similar to S2, except medium dense -GLACIAL STRATIFIED DEPOSITS- 10 10 10 15 15 15 30 30 30 25 25 25 15 15 15 5 5 5 32.0 Cutting Head Dilatancy: R - Rapid S - Slow N - None Toughness: L - Low M - Medium H - High Cuttings Elapsed Riser Pipe Field Tests: Drill Mud: Summary Casing Casing: PID Make & Model: Hoist/Hammer: Depth (ft) to: -- - - 4.25 Sampler Overburden (ft) S - Split Spoon Sample Rock Cored (ft) Well Diagram Samples Water Concrete Hammer Fall (in.) Drilling Equipment and Procedures Plasticity: N - Nonplastic L - Low M - Medium H - High Dry Strength: N - None L - Low M - Medium H - High V - Very High 1 3/8 140 --Truck Mounted Mobile Drill B53 Spun Not Encountered of Hole Date Bottom Filter Sand Barrel Sample ID Bit Type: B1 -of Casing Bottom *Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size. Time Water Level Data Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample Time (hr.) Rig Make & Model: Grout B1 Bentonite Seal Screen Boring No. S None Boring No. - -30 WinchAutomatic Hammer HSA Inside Diameter (in.) Type Hammer Weight (lb) 6S Start 21 October 2022 21 October 2022 Driller Datum of Finish 2 152.0 (est.) Sheet No. T. Danaher Location See Plan File No. Elevation 0206317-000 J. Nitsch H&A Rep. None 1Client Contractor Project BURNS & MCDONNELL SEABOARD DRILLING, INC./TERRACON CONSULTANTS, INC. EVERSOURCE QP700 - STATION 921, WEST BARNSTABLE, MA SampleDepth (ft)H&A-TEST BORING-07-1 0206317HA-LIB09.GLB HA-TB+CORE+WELL-07-1.GDT \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0206317\GINT\0206317-WEST BARNSTABLE TBLOGS_DRAFT.GPJ Dec 19, 22TEST BORING REPORT Depth (ft)0 5 10 15 20 Sample No.& Rec. (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)USCS SymbolVISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) Gravel Sand Field Test % Fine% Coarse% Medium% Fine% FinesDilatancy% CoarseToughnessPlasticityStrengthField Test 20.0 22.0 25.0 27.0 30.0 32.0 S414 S516 S615 7476 6456 8555 120.032.0 SW- SM SW- SM SW- SM Medium dense red-gray well-graded SAND with silt, no odor, moist -GLACIAL STRATIFIED DEPOSITS- Loose red-gray well-graded SAND with silt, no odor, moist Loose red-gray well-graded SAND with silt and gravel, no odor, moist Bottom of Exploration at 32.0 ft. Note: Borehole backfilled with cuttings upon completion. 5 5 5 15 15 15 40 40 35 30 30 30 10 10 105 B1 Sheet No.of Boring No. File No. Boring No. B1 0206317-000 22 Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.SampleDepth (ft)H&A-TEST BORING-07-1 0206317HA-LIB09.GLB HA-TB+CORE+WELL-07-1.GDT \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0206317\GINT\0206317-WEST BARNSTABLE TBLOGS_DRAFT.GPJ Dec 19, 22TEST BORING REPORT Depth (ft)20 25 30 Sample No.& Rec. (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)USCS SymbolVISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) Gravel Sand Field Test % Fine% Coarse% Medium% Fine% FinesDilatancy% CoarseToughnessPlasticityStrengthField Test 7.0 9.0 10.0 12.0 15.0 17.0 S114 S28 S317 37108 7131310 5444 151.50.5 145.07.0 SM SM SM -GRAVEL- Note: Boring vacuum-excavated to 6 ft below ground surface to clear utilities prior to drilling. -VACUUM EXCAVATED / FILL- Medium dense red-gray silty SAND with gravel, no odor, moist Similar to S1 Loose red-gray silty SAND with gravel, no odor, moist -GLACIAL STRATIFIED DEPOSITS- 10 10 10 15 15 15 30 30 30 25 25 25 15 15 15 5 5 5 47.5 Cutting Head Dilatancy: R - Rapid S - Slow N - None Toughness: L - Low M - Medium H - High Cuttings Elapsed Riser Pipe Field Tests: Drill Mud: Summary Casing Casing: PID Make & Model: Hoist/Hammer: Depth (ft) to: -- - - 4.25 Sampler Overburden (ft) S - Split Spoon Sample Rock Cored (ft) Well Diagram Samples Water Concrete Hammer Fall (in.) Drilling Equipment and Procedures Plasticity: N - Nonplastic L - Low M - Medium H - High Dry Strength: N - None L - Low M - Medium H - High V - Very High 1 3/8 140 --Truck Mounted Mobile Drill B53 Spun Not Encountered of Hole Date Bottom Filter Sand Barrel Sample ID Bit Type: B2 -of Casing Bottom *Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size. Time Water Level Data Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample Time (hr.) Rig Make & Model: Grout B2 Bentonite Seal Screen Boring No. S None Boring No. - -30 WinchAutomatic Hammer HSA Inside Diameter (in.) Type Hammer Weight (lb) 9S Start 21 October 2022 21 October 2022 Driller Datum of Finish 2 152.0 (est.) Sheet No. T. Danaher Location See Plan File No. Elevation 0206317-000 J. Nitsch H&A Rep. None 1Client Contractor Project BURNS & MCDONNELL SEABOARD DRILLING, INC./TERRACON CONSULTANTS, INC. EVERSOURCE QP700 - STATION 921, WEST BARNSTABLE, MA SampleDepth (ft)H&A-TEST BORING-07-1 0206317HA-LIB09.GLB HA-TB+CORE+WELL-07-1.GDT \\HALEYALDRICH.COM\SHARE\CF\PROJECTS\0206317\GINT\0206317-WEST BARNSTABLE TBLOGS_DRAFT.GPJ Dec 19, 22TEST BORING REPORT Depth (ft)0 5 10 15 20 Sample No.& Rec. (in.)Sampler Blowsper 6 in.StratumChangeElev/Depth (ft)USCS SymbolVISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) Gravel Sand Field Test % Fine% Coarse% Medium% Fine% FinesDilatancy% CoarseToughnessPlasticityStrengthField Test