Loading...
HomeMy WebLinkAbout0044 BODICK ROAD - 344-82 paCKage steel buliding SYSTEMS HARBACK ROAD SUTTON, MASSACHUSETTS 01527 1-617-S65-5871 a e sig n calculations joD = ���L NO _81Q L.�4__ DATE : r JOB ROOF LOAD_��?��:F_ WIND LOAD ���-�� BAY SPACING -_-- 0 ^ - BEAM DESIGNATION^ , , ^ ^ TB 50- 700 � SPAN, ^ , , ^ , . ^ ^ ^ , ^ , . . , ^ 50,00 FT BAY, , ^ ^ , ^ ^ . ^ ^ , ^ , ^ ~ . , , 20^00 FT SPEC. YIELD FY^ ^ , ^ ^ , ^ 50^00 KSI � WEB YIELD FYW^ ^ ^ ^ ^ ^ ^ ^ 50^00 KSI DESIGN LIVE LOAD^ ^ , , ^ 3000 PSF DESIGN DEAD LOAD, . , . ^ 5.00 PSI:-- BUTT HEIGHT, ^ ^ , ^ ^ ^ ^ ^ , 10,00 IN END WEB PLT, T X L ^ ^ ^ 1875 IN X 10^00 FT MID WEB PLT, T X L ^ ^ ^ 1875 IN X 15,00 FT TOP FLANGE W X T ^ ^ , ^ ^ 8^00 IN XO.3125 IN �r BOTT FLANGE W X T ^ , , ^ 8,00 IN XO^3125 IN � CONCENTRATED LOADS: � � � LOAD (K) P1 ,P2,P3,P4^ ^ ~ ^ O^OO O^OO 0.00 O^OO DIST, FROM LT. END (FT. ) 0000 0.00 0,00 0^00 END MOMENTS (FT-K) ^ ^ ^ ^ ^ ^ O^0O 0^00 � RL= 17,267 RR= 17,267 FORMAT OF OF OUTPUT: SEG H T RATIO A WEB A SECT SX SX IX NO, ( IN, ) ( IN. ) H/T (SQ IN) (SO IN) (TOP) (BOTT) � ( ~ FVA FV RATIO FBTA XT FBCA FBC FBCA/ � (KSI ) (KSI ) FVA/FV (KSI ) (KSI ) (KSI ) (KSI ) FBA Irk, (MOMENT (K-FT) SHEAR (K) X CO:ORD (FT. ) * ^ 1 11 ^88 . 1875 63^3 2,23 7,23 33^9 33,9 211 °8 7.27 1606 0.429 9^ 13 30,00 9, 13 30.00 0,304 25^79 16, 19 1 ^54 K 2 14^96 , 1875 79^8 2^80 7^80 44. 1 44° 1 343^8 �y 5,00 13,06 0.383 19^68 30,00 19^68 30^00 0^656 �r 72^37 14^03 4^63 �[ 3 18^04 . 1875 96^2 3,38 8,38 54^9 54^9 512^9 x� 3^51 8,98 0,391 24^52 30,00 24,52 30,00 0.817 112^30 11 ^87 7471 = 4 21 ^ 13 ^ 1875 112,7 3^96 8,96 66^4 66,4 72108 2,45 6^55 0^374 26^32 30,00 26^32 30^00 0^877 � 145^58 9^71 10,79 5 24^21 ^ 1875 1290 4^54 9^54 78,4 78^4 973,3 � 1 .66 4,99 0^334 26,36 30^00 26,36 30,00 0^879 �^ 172^ 19 7^55 13,87 � 6 27,29 ^ 1875 145^6 5^ 12 10^ 12 91 ^0 91 ,0 1270, 1 � 1 ,05 3,92 0,269 25,34 30,00 25,34 29.79 0,851 192, 16 5^40 16,96 . ~ 7 30,38 ^ 1875 162^O 5^70 10^70 104 ,2 104^2 1615,0 0,57 3^ 17 0. 179 23,66 30^00 23^66 29^21 0^810 � 205. 47 3~24 20^04 � ~ v. � 8 33,46 '. 1875 l78,4 -6,n7 11 ^27 118^0 118-0 ~ -K -M - -`- -- K� 0° 17 2^61 0,066 21 ^57 30^00 21 ^57 28,51 0^757 � ` 212^ 12 1108 23^ 13 � � p 33,46 ,1875 178^4 6^27 11 .27 118^0 118,0 2010^8 � 0^ 17 2^61 0.066 21 .57 30^00 21 ,57 28^51 0^757 212. 12 -1 ,08 26,21 10 30,38 , 1875 162^0 5,70 10,70 104,2 104,2 1615,0 n- 0^57 3, 17 0, 179 23^66 30,00 23.66 29^21 0,810 205,47 -3,24 29^29 Nr - 11 2709 ^ 1875 145^6 5412 10~ 12 91 ,0 91 ^0 1270. 1 1 ^05 3,92 0,269 25.34 30,00 25^34 29^79 0.851 N, 192416 -5^40 32^37 ~ fZ7 12 24,21 ^ 1875 129. 1 4^54 9,54 78,4 78^4 973.3 x� 1 ^66 4,99 0^334 26^36 WOO 26.36 30.00 0,879 � 172^ 19 -7,55 35^46 «� 13 21 ^ 13 ^ 1875 11217 3.96 8^96 66^4 66,4 721 ,8 � 2^45 6.55 0,374 26^32 30^00 26.32 30.00 0^877 145^58 -9,71 38.54 � _ 14 18,04 ^ 1875 96,2 3^38 8^38 54,9 54^9 512^9 3^51 8,98 0^391 24,52 30^00 24~52 30^00 01817 � 112^30 -11 ^87 41 ,62 ~ d� 15 14^96 ^ 1875 79.8 2,80 7,80 44^ 1 44^ 1 343,0 5,00 13,06 0.383 19^68 3000 19.68 30,00 0,656 - 72.37 -1003 44^71 o� n= � ' 16 11 ^88 ^ 1875 63^3 2,23 7,23 33,9 33,9 2110) ~' 7^27 16.96 0.429 9^ 13 30^00 9, 13 30.00 0^304 25^79 -16, 19 47.79 � ` DEFLECTION= 2^7624 REL. STIFFNESS @ LT. END (A)= 32^657 REL. STIFFNESS @ RT. END (B)= 32^657 CARRY-OVER FACTOR A-B= 0^2853 � CARRY-OVER FACTOR B-A= 0.2853 ~ BEAM WGT^ -WEB & FLANGES ONLY= 1569,9 � � � NOTES � SHEAR STRESS. ^ , , ^ ^ ^ . ^ , ^ FVA -APPLIED FV -ALLOWABLE TENSION DUE TO BEND^ ^ ^ ^ FBTA-APPLIED FBT-ALLOWABLE COMPRESS. DUE TO BEND. . FBCA-APPLIED FBC-ALLOWABLE � ` � m ` ( � ~ ( ` ` � � . � � � M^B,M,A, WIND LOADING � � ~ � BASIC WIND PRESSURE=P=20PSF W1=^246 =� W2=^246 W3=, 185 � W4=, 154 � ~» W5=^ 154 W6=, 154 � � � � �r / = ( � � � m� = S . IFFNESSES, CARRY OVER, DISTRIBUTION FACTORS KBM1 KBM2 KCOL1 KCOL2 C,O, 1 C^O,2 32^58 32^58 11 , 12 11 ^ 12 ,2841 ,2841 DFBM1 DFCOL1 DFBM2 DFCOL2 w^ 0^796 0^204 0,796 0^204 � � FIXED ENDED MOMENTS � FEMW= 605 , FEML= 3,91 (� � � � . � � � � ACTUAL MOMENTS, SHEARS, AXIAL LOADS � WIND LATERAL LOADS (FT—K) � ~ MW= —19,44 N' ML= —21 . 17 � � ' HW= 3^ 12 HL= 2^58 dP RW= —0^82 �~ � R[" 0^82 ~ = ~~ ACTUAL REACTIONS DUE TO UPLIFT ON ROOF (K) LOAD CASE 1 ULRL= 3^98 ULRW= 4^36 ~* x ACTUAL REACTIONS DUE TO DEAD & LIVE LOADS (K) LOAD CASE 1 k, ' RDL= 2^47 RLL=14,80 «" DESIGN WINDWARD TBCF-14^25 LOAD CASE 1 / ALL DESIGN LOADS REDUCED BY A FACTOR OF ,75 TOP OF COLUMN TRY W 8X13 A= 304 I= 3916 SX= 9^9 RX=3,21 RY=0,84 RT=1 ,01 D/AF=7^83 IT- � KX=1 ^73 SLENDERNESS RATIO=K(L)/RX= 92,26 SLENDERNESS RATIO=K(L)/RY= 85^41 FA=13,93 FB=21 ^29 � FE=17^54 P= 3^51 � M= 17099 � FAA=P/A=091 � FBB=M/SX=17^66 � EQ. 1 ^6-1A FAA/FAfCM(FBB)/( 1—FAA/FE)FB=0,81 m EQ. 1 ^6-1B FAA/,6(FY) fFBB/FB=0^87 � USE W 8X13 ' � � ` � ' «, / DESIGN LEEWARD TBCF-14,25 LOAD CASE 1 \` ` ALL DESIGN LOADS REDUCED BY A FACTOR OF ,75 TOP OF COLUMN � = TRY W 8X13 A= 3^84 I= 39.6 SX= 9^9 RX=3^21 RY=0,84 RT=1 ^01 D/AF=7,83 ~^ KX=1 ^73 � SLENDERNESS RATIO=K(L)/RX= 92^26 SLENDERNESS RATIO=K(L)/RY= 85^41 �~ m� FA=13^93 FB=21 ^29 � FE=17^54 � � P= 5.03 M= 190.53 v � FAA=P/A=1 ^31 � FBB=M/SX=19^23 ~ ' ~� ' EQ. 1 ,6-1A FAA/FAfCM(FBB)/( 1—FAA/FE)FB=0^92 � EQ, 1 ^6-1B FAA/^6(FY)fFBB/FB=0^96 USE W 8X13 � � � ! � | | � NOTES� � ! ALL DESIGN LOADS REDUCED BY ,75 IN ACCORDANCE � WITH SEC. 1 ,5^6, P^5-22 OF A^ I ,S^C^ SPEC. �- BENDING, , ^ ,FBB(ACTUAL) FB(ALLOWABLE) AXIAL, , , ^ ^ ^FAA(ACTUAL) FA(ALLOWABLE) ` MOMENTS. ^ ^ ~ ^ ^ , ^ , ^ , ^ ^ ^ ^ ^POSITIVE = CLOCKWISE � � VERTICAL REACTIONS. ^ ^ , *POSITIVE = UPWARD � ( � HORIZONTAL REACTIONS ^ ^ ^POSITIVE = TO THE RIGHT � < � ` LOAD CASE 1= 0^5LL, 1 ^0WL, 1 ^0CL, 1 ^0DL � ( s � / � � \ nu � a° ENDWALL BEAM DESIGN EB-50-700 FORMAT FOR OUTPUT: 8� BAY BAY LOAD LEFT RIGHT BEAM NO. SIZE (K/FT) REACTION REACTION SIZE x~ MOM, MOM^ MAX. MOM. MOM^ LEFT END INT. START RIGHT n^ END PLATE MOM, PLATE END DISTANCE FROM LEFT END IN FEET TO: �y END ZERO MAX. ZERO START � 4� OF MOM. INT. MOM. OF � PLATE POINT MOM. POINT PLATE � ACTUAL BENDING STRESS AT EACH LOCATION: � LEFT END MAX. START RIGHT END OF INT^ OF END PLATE MGM. PLATE ~~ 1 15,0 0,3850 2^0773 3^6977 W 8X1O O.00OO 0^0000 5^6040 -12, 1533 -12^ 1533 � = 0.0 010000 5,3955 10^7910 15,0 ' 0.0000 0^0000 8^6105 -18,6735 -18°6735 2 20,0 0^3850 3^8500 08500 W 8X1O -12^ 1533 -12+ 1533 7^0966 -12, 1534 -12° 1534 O^O 3,9283 10^0000 16^0717 20,0 � ~+ -18^6735 -18^6735 10,9039 -18,6735 -18~6735 - �0 3 15,0 0,3850 3^6977 2.0773 W 8X1O K, ~^ -12, 1533 -12. 1533 5^6040 0.0000 0"0000 - O^O 4^2090 9,6045 15,0000 15^0 -106735 -18^6735 8^6105 O^O0OO 0°O0OO �r p� - � � = � � - - � ( ` � + DESIGN ENDWALL COLUMN ECF-15,75 LL=30,0 BAY=20,0 � TRY W 8X1O A= 2^96 I= 30,8 SX= 7.8 RX=3^22 � RY=0^84 RT=0,99 D/AF=9^77 � EFFECTI � vE HG | ,=193,0lM^ � KL/RX= 59,94 KL/RY= 85^61 � FA( 1 ^33)=19^58 � FB( 1 ^33)=26,01 FE( 1 ^33)= 55^28 � x P= 6^74 � UNIFORM WIND LOAD=W= ^215 � M= 83^57 � FAA=P/A=2^28 ~ FBB=M/SX=10^70 � ED. 1 ^6-2 FAA/FAfFBB/FD=0^53 ~ USE W 8X10 - ( > � � � ^ � � � � � � . � ` ' ( � (� ( / / * ~^ DESIGN CORNER COLUMN CCF-14^52 SL=30.0 BAY=20^0 � *` CORNER COLUMN IS SUPPORTED BOTH WAYS BY GIRTS GIRT SPACING NOT TO EXCEED 6,0 FT. TRY W 8X1O A= 2^96 RY=0,84 8� AXIAL LOAD=P= 2,89 Nr ~~ EFFECTIVE HGT°= 72^0 KL/RY= 85,61 = �~ FA=14^72 AREA REQUIRED=P/FA= O.2O ~ .� AREA FURNISHED= 2^96 ~ v~ USE W 8X1O _ ~ > | = ~ - � _ . ^ � K ~ � � AF . � ~ � K ~ � . � / � � \ - � PURLIN DESIGN FY=55 KSI d� FORMAT FOR OUTPUT: BAY BAY LOAD LEFT RIGHT PURLIN MO . SIZE (K/FT) REACTION REACTION DESIG, N� MOM. MOM. MAX. MOM. MOM. LEFT END INT. START RIGHT �~ END LAP MOM. LAP END DISTANCE FROM LEFT END IN FEET TO: � END ZERO MAX. ZERO START ° OF MOM. INT. MOM. OF � LAP POINT MOM. POINT LAP v ACTUAL BENDING STRESS AT EACH LOCATIOW ~ LEFT END MAX. START RIGHT END OF INT. OF END � LAP MOM^ LAP ` e~ L 1 20.0 0^ 1320 1 ^0195 1 ^6205 6Z-21 ^97 0.0000 0^0000 3,9373 � —4,4548 —6,0093 � 0.0 O^OOOO 7^7238 15.4475 1940 ~ O^OOOO 0^0000 23^8626 —26.9988 —18^2099 +* � 2 20,0 0^ 1320 1 ^4282 1 .2118 6Z-21 ^97 � —6.0093 —4^6470 1 .7174 —2,6988 —3^8446 ~u 1 .0 5^7188 100200 15,9211 19^0 � —18^2099 —28, 1639 10,4087 —16,3565 —110503 � 3 20.0 0, 1320 1 ^2118 1 ^4282 6Z-21 ^97 � —3^8446 —2^6988 1 ^7174 —4^6470 —6.0093 ^ 1 ,0 4,0789 9^ 1800 14^2812 19^0 —11 .6503 —16^3565 10^4087 —28. 1639 —18^2099 �- 4 20,0 0^ 1320 1 ^6205 1 ,0195 6Z-21 ^97 —6^0093 —4^4548 3^9373 0^0000 0,0000 �( 1 ^0 4^5525 12^2762 20^0000 20,0 � —18^2099 —26^9988 23^8626 0^0000 0.0000 � IS � * � � � ` � � [ � PACKAr-,F INDUSTRIES, INC. 811Z 16 GA 50 KSI 17-31-80 80041 1. TYPE= Z TCTAL DEPTH= 8 .3333" THICK.= 0.0610" FY= 50.03 KSI AREA=O. 85( I N2) .!EIGHT= 2.97L8/FT TOP FLG BOT FLG RAD ; FLG C WEB"= 0.1250 0.1250 WIDTH OF FLG" = 2.3880 2. 3880 FLG SLGPE(X"/12) 0.0 0.0 . I+= OPENING.. - CLOSING) RAD ? FLG E STIF= 0.1253 0.1250 STIFF ANGLE(DEG)= -45.0000 -45. 0000(+= OPENING) . STIFF MDTH" = 0.7645 0.7645 . GROSS SECTION PROPERTIES: CENTRCID:X= 0.0 " Y= 0.0 " I X= 8.17 IN4 I Y= 1.1.5 IN4 R X= 3.09 43" R Y= 1. 159611 CITF)= 4.0333" C ( BF) = 4.0000" I-.'AX= 8.81 IN4 I-.41N= 0.51 .IN4 .R-ilAX 3.21 IN4 R-MIN= 0.77 IN4 IXY( IN4)= 2.21 PRIM. ANG= -16. 10 DEG(+- = COUNTER CLOCKWISE) BENDING PROPERTIES UNDER FULLY BRACED COMM TION--- WEB - 14/T= 129 .15 FVC= 4.99 KSI F3W= 31. 19 KSI FV= 4.99KSI TOP FLG IN COMP.-- W/T (L IM )= 31.2 W/.T (ACTUAL ) 34.8 IEFFECTI VE)= 2.0010" . ' FB(ALL )= 33.3 KSI C= 4.03" SX=' ' 2.01 IN4 MALL)= 60.37 K-IN STIFF I ( IN4)=0 .001299 REO'D=0.000853 ALL COMP( STIFF )= 27.83 KSI BOTTOM FLG IN COMP.- W/T(LIMi )= 31 . 2 'rl/T(ACTUAL) = 34. 8 IItEFFECTIVE)= 2.00101, FB (ALL)= 30 .0 KSI C= 4.00" SX= 2.01 IN4 MtALL)= 60.37 K-IN STIFF ,I ( IN4) =0.001299 REO' D=0.000853 ALL COMPISTIFF )=. 27.83 KSI BEMDI ldG PROPERTIES FOR UGLY = 60 .0" AND CB = 1.00 TOP IN COMP-- L2 .SXC/D.IYC=1610. 2 FB(ALL)= 28.21 KSI ? BUT IN COMP-- L2 ,SXC/D. IYC=1610.2 FBtALL)= 28.21 KSI PROPERTIES FOR AXIAL COMP. t 4 0= C. 59, OA= 0.63, 0S= 0.93, REDUCED A= 0 .54 IN2,MIN FC= 27.83 KSI WHEN' AXIALLY LOADED AND LATERLLY BRACED C UBLY= 60.011UBLX 60.0" CC= 107.9 CC/S0RT (0) = 140. 6 K KL/RIINAX) FA1 { KSI ) 1 .00 77.7 13.03 1 .50 116 .5 10. 10 2 .00 155 .3 6.30 WHFtiN; AXIALLY LOADED AND SUBJECTED TO LATERAL BUCKLING ` XO= 0. 0 IN , R0= 3.30 IN BATA= 1 .00, J= 0 .0011 IN4, C11= 6.05 IN6 K SIGMA( T )SIG-MA( EX ) SIGMA( TF ) F'EX SIGMA( E ' X) FA2 KSI KSI KSI KSI KSI KSI 1. 00 53. 80 834. 9 53. 8 393. 13 763. 1 13.27 1 . 50 24.63 371 . 1 24.6 176. 95 339. 1 10.78 ?.00 14.41 239. 7 14.4 99.53 190. 8 7.52 RESULT OF ANALYSIS FOR GRAVITY LOAD FY = 50. 00 KSI PACKACE INDLSTRIES, INC. 80066 01-02-81 P ACKAGE PPyAINJELL ( INTERMEDIATE y STIFFE NE RS N//OTT EFFECyTyIVEE) .' GROSS SECT ICN PROPERTIES PER ONE COMPLETE SECTION OF PANEL PANEL GAGE T WEIGHT THEORETICAL_ I-NA S-TOP S-BTM V ( IN. ) ( PSF) COIL-WIDTH ( IN. ) ( IN.4 ) ( IN.3) ( IN.3 ) 26 0.0179 0. 8001 13 .248 0.0426 0 .0434 0.1596 24 0.0235 1. 0673 13. 230 0.0562 0.0572 0.2097 22 0.0299 1.3342 13.212 0. 0694 0.0707 0.2583 SECTION PROPERTIES FOR ALLOWABLE LOAD DETERit;INATICN PER ONE FOOT PANEL WIDT1 OF ".COVERAGE CONDITICN PANEL I-NA S-TOP F-TOP S-STM F-BTM ALLOW. MOMT. OF BENDING GAGE ( IN.4) ( IN.3) (KSI ) ( IN.3) ( KSI ) (KIP-IN. ) TOP OF 20 0. 0366 0.U362 -30. 00 0. 1524 7.14 1 .0873 PANEL IN 24 0.0529 0 .0533 -30. 00 C.2057 7. 77 1.5976 C CMPRES SI CN 22 0. 0689 0.0701 -30. 00 0.2577 8.16 2.1030 BCTTCM CF 26 0.0217 0.0338 30. 00 0.0358 -28.38 1.0153 PANEL IN 24 0. 0314 0.0464 30. 00 0.0548 -25.40 1.3922 COMPRESSION 22 0.0421 0.0593 30. 00 C. C779 -22. 83 1.7777 ALLli,rABLE UNIFORMLY DISTRIBUTED LOAD IPSF) AND CORRESPONDING DEFLECTION ( IN! INPUT WIDTH OF COVERAGE. OF ONE COINIPLETE SECTION = 12.00 IN. E SPAR; GAGE SIMPLE SPAN TWO SPANNS THREE SPANS ALLOW DEFL . ( FT ) LOAD DEFL . LOAD DEFL. LOAD DEFL. L/180 L/240 3. 33 26 65.4 0. 15 61.0 0. 10 76 .3 0.16 0 .22 0.17 24 96.0 0. 16 83. 7 0.09 1 C4.6 0. 15 22 126.4 0. 17 106.9 0.09 133 .6 0. 14 4.00 26 45 .3 0.22 42.3 0. 14 52.9 0.23 0.27 0.20 24 66.6 0.23 58.0 0.13 72 ..5 0.22 _ - 22 87.6 0.24 74.1 0. I3 92.6 0.20 4. 50 26 35. 8 0.28 33.4 0.18 41.8 0.29 0.30 *: 0.22 12�4 52. 6 0.29 45. 8 0. 17 57.3 0.27 22 69.2 0.31 58.5 0. 16 73.2 0.26 5.00 26 29.0 0. 34 27. 1 0.22 33. 8 0.36 0.33. 0.25 24 42 .6 0.36 37. 1 0.21 46.4 0. 34 22 56. 1 0.38 47.4 0.20 59.3 0.32 5. 50 24.0 0.41 22.4 0.27 28. 0 0.43 0.37 0.27 24 35. 2 0.43 30.7 0.25 38.4 0.41 22 46 .3 0 .46 39. 2 0.24 ' 49. 0 0.39 6. 00 26 2.0. 1 0.49 18.8 0.32 23 .5 0.52 0.40 0.30 24 29.6 0.51 25. 8 0. 30 32. 2 0.48 22 38.9 a' 0.1,55 �312.9 0y.129 41 . 1 J. 0.46 y y { y y y NOTE- ALL01,1t1LE LCADS CAN BE INCREASED BY- 1/3 IF - LCAD IS DUE TO WIND. I� 0 ; i I 4.0 I /►SM/ cac.r ell a 97_ LaT 4 43 kill J � I p�p�sal I stoev.e.� io.nLa,= i9 JI wa�xc. _ o , ell, 46*4m j s - - ®•�i �� fir{.,�` Tr'`'/�o¢�zn, \ L 01 AlAic- IV Po4z- "/273 = 9/a /Vo7ZF zq y Z�0104TLV/vc. /V_'7Z bz�`✓/�. ;._,S r« c I� oN H�GNtST CERTIFIED PLOT PLAN LOCATION . !`�/•4NN/j /LJ/j�S SCALE PLAN REFERENCE . 3e-?^/q. . 4?T 4 8 A CERTIFY THAT THE SHOWN ON THIS PLAN IS LOCATED ON THE GROUND AS SHOWN HEREON AND THAT IT CONFORMS TO THE SETBACK REQUIREMENTS OF THE TOWN OF WHEN CONSTRUCTED. DATE . . . PETITIONER: �/�•ni.,:i..3 /'7�9.5 S REGISTERED LAND SURVEYOR -Ale 2�T Z G L - 5 `/C L TS EL.. .. y,i�' at- TOP OF FOUNDATION eFrsev6D Feo�-► �e�nt/%��G ��F� o a+rD ° CONCRETE COVERS 4 CAST IRON 12"MAX.PIPE r v'a EQUIV.)ORMIN . ^ 4 ORANGEBURG(OR EQUIV.) 12"MIN. PITCH I/4 PER.FT. PITCH I/4NPER.FT LEACHING FIELD ( �. REQUIRED) t I/B - 1/2 WASHED STONE INVER6T3 INVERT INVERT WASHED STONE /z, ° EL - SEPTIC TANK �� DOX s, 3/4 — I I/2 .. ' BOX EL...�..I. e INVERT /Svo INVERT) GAL. INVERT INVERT EL.= 3.G... Son PROR LE OF -- GROUND WATER TABLE F'-19 Z SEWAGE DISPOSAL SYSTEM TYPICAL CROSS SECTION SOIL LOG NO SCALE LEACHINGCALE FIELD NO DATE i98� TIME ((•.'ov R?7. . TEST HOLE I TEST HOLE 2 DESIGN DATA ELEV. . .�:^o. . . . . . ELEV. . �.�"' . . . . oc�icc sPAcc-- izsocY 12"MIN. 1/8_I/2 Aix ,moo WASHED o'r 94 CAe- - — r7777777f NUMBER OF BEDROOMS ONE /-(/CL -r; 5.0•�+n�Fi t.< WRF�I.�.S E"s 3pE'K�r. T x 4<.-173 Z" AI era.2E' TOTAL ESTIMATED FLOW�. . t: .i8o .. GALLONS/DAY a i�•• 4" RFOR ED :.a 41Z SG SA'Vn BOTTOM LEACHING AREA .. 3Za. . . . . SQ.FT./ FIELD PLASTIC PIPE 'z 04' a., GrOt" 3/4"-11/2 GARBAGE DISPOSAL /VoNE_ ..(50% AREA INCREASE) WASHED STONE G'oa/ZSc TOTAL LEACHING AREA Zo SQ.FT. z' 4 4 PERCOLATION RATE 8 5« PER. INCH W84 84" _ - Sp"'D 84 LEACHING AREA PER PERCOLATION RATE . .z`'.. . SQ.FT. GROUND WATER TABLE APPROVED BOARD OF HEALTFJ, 6l KELLEY CO. . . .WATER ENCOUNTERED DATE ENGINEERS—SURVEYORS oM OFAp . . . . 346 LONG POND DRIVE & WITNESSED BY AGENT OR INSPECTOR SOUTH YARMOUTH, MASS. THO BOARD OF HEALTH . . . / . . . IC /Zo,4-D 026 4/;l E. __f 2420 ENGINEER f_Tj +> C . . uEy ,R •S �FSS�ONAI.E�G\. . PETITIONER