Loading...
HomeMy WebLinkAbout0155 ENTERPRISE ROAD i5s E„J erpr'se � CMek— FI — A FILE BACK IN ATTIC BANKERS BOX FILE ALPHABETICALY BY STREET PLEASE DO NOT FILE IN STREET FILE r7"73 Chick-fil-A Cape Cod Grand Opening Marketing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - t I. Food Distribution s • Saturday, November 26, 2016 o"Surprise and Delight"(9am-2pm) 1. Chick-fil-A Corporate Marketing Team will deliver free Chick-fil-A Sandwich samples to local business and schools in the community with a gift card inviting them to the Grand Opening. 2. Chick-fil-A Corporate Marketing Team will be wearing logo clothing for easy identification. 3. The food will be distributed utilizing carts and warming bags. II. Grand Opening Week Events • Monday, November 28, 2016 o"Premiere Night Event"[5:30pm-7:30pm (set up 4pm)] " 1. Chick-fil-A will host an invitation only event in the new Chick-fil-A Cape Cod restaurant. Estimated attendance 100 guests. 2. Chick-fil-A Corporate Marketing Team-will offer samples to the guests to introduce them to the Chick-fil-A Cape Cod menu. (see attached menu) 3. The guests will present their in for admission into the restaurant. 4. Photos will be offered with the Chick-fil-A Cow Mascot. 5. Set up will include flowers, plates, utensils_and Chick-fit-A plush cows on the tables. 6. A red Chick-fil-A tent and red carpet will be placed at the entrance of the new restaurant (approximately 1Ox10 in size).F 7. A local musician will play acoustic background music. • Tuesday, November 29, 2016 o"Family and Friends Event" [5:30pm-7:30pm (set up 4pm)] 1. Chick-fil-A will host event for new Chick-fil-A Cape Cod employees and their families. Estimated 100-125 guests. 2. Chick-fil-A Corporate Marketing Team will offer samples to the guests to introduce them to the Chick-fil-A Cape Cod menu. (see attached menu) 3. Photos will be offered with the Chick-fil-A Cow Mascot. 4. Set up will include flowers, plates, utensils, and Chick-fil-A plush cows on the tables. 5. A red Chick-fil-A tent and red carpet will be placed at the entrance of the new restaurant(approximately 1Ox10 in size). 6. A local musician will play acoustic background music. • Wednesday, November 30, 2016 o "Community First 100 Event" -The First 100 Guests will receive a gift card for 52 combo meals (Chick-fil-A for a year!) o Start time 6:00 a.m. ; End time 6:00 p.m. (timeline of events in packet) 1. 6:00am -First 100 participants begin registration 2. Must be 18 years or older to receive prize; guests 5 years and older may stay but are not eligible to be awarded prize. 3. Participants are required to stay on property until awarding of prizes at approximately 6:00 p.m. Wednesday, November 301h. 4. We will register guests up until we reach 100 participants. We will register 10 alternates who move into the 100 spaces should anyone drop out or become disqualified. 5. If we have over 100 hopefuls at 6am on November 30th we will do a drawing for the 100 spots. They will still have to remain on the property for the remainder of the the event if selected. 6. Chick-fil-A Inc. Marketing Staff will be onsite with participants for the entirety of the event. 7. Participants will be allowed to bring there own chairs and tents and set up in the approved parking spaces on the Chick-fil-A Cape Cod lot (please see "Chick-fil-A Cape Cod plan" in packet). 8. Designated offsite parking will be provided for guests participating in event at lot behind restaurant owned by Simon Properties and designated space at the Cape Cod Mall. They will not be allowed to go back and forth to their cars. • Contact: Rick Williams, Operations Director, 508-771-0201 9. A fire lane will be around the restaurant in order for emergency vehicles to have access to building if need arises (fire lane indiciated on "Chick-fil-A Cape Cod plan"in packet) 10. Guests will be allowed to'come inside restaurant to use restroom throughout entire event. 11. Barnstable Police department will be hired for the full 24 hour event. . 12. Guests will be fed Breakfast, Lunch, and Dinner during event inside of restaurant. No Variance permit required from Health Dept. since food is being, . served inside;food permit will be obtained. o Contact: Marybeth McKenzie R.S. (Marybeth.McKenzie@town.barnstable.ma.us) 13. A DJ/Event Host will be entertaining the crowd from approximately 6:00 a.m. until 6:00 p.m. when prizes are awarded. (Chick-fil A tent will be used for DJ. Approximately 10x10 in size). • No entertainment License is needed since event is free to public o Contact: Margaret Flynn (Margaret.flynn@town.barnstable.ma.us) III. Community First 100 Prize Awarding • Wednesday, November 30, 2016 o "Awarding"(6:OOp.m.) 1. First 100 participants will enter restaurant with red carpet rolled out to receive their prize 2. The participants will line up in numerical order, wear their First 100 event T- shirts and receive their gift cards presented by Owner/Operator Annemarie Reissner. 3. The restaurant will be open for business the following the First 100 awarding ` at 6:OOpm. R I rl ➢ Notes • Media will be involved; Chick-fil-A Corporate has a Public Relations firm directing media • PR: Desiree Fulton,Jackson Spalding,404-214-2139; dfulton@jacksonspalding.com • Event Planner: Lauren Nunez, Corporate Contact, 678-936-5914; lauren.nunez@cfacorp.com o II Hello, I greatly appreciate each of you taking the time to look over information regarding our Grand Opening Marketing Events in November for Chick-fil-A Cape Cod! I have included our Grand Opening Market Strategy for the new restaurant.This includes a breakdown of the events we are planning to execute leading up to our Grand Opening day. I have reached out to each department (Building, Health, and Licensing) to make sure we have exactly what we need for these events. The information is included in the packet also. If you need further information regarding these events, please do not hesitate to reach out to me and I will get the additional information to you as quickly as possible. After speaking with several of you, we have modified our Community First 100 event to better fit the requirements of the Town of Barnstable. I have included several documents explaining this event as well as a site plan showing Fire Lane, where individuals will be "camping", as well as where our(approximately) 10x10 red Chick-fil-A tent will be located. We have confirmed our Grand Opening date for Wednesday, November 30t" at 6:00 p.m.'l am more than happy to answer any questions you may have, so please do not hesitate to contact me. I truly appreciate you taking the time to look over this and assisting in the next steps as we move forward. We are so excited to.be a part of the Cape Cod community and look forward to working with you! Have a great rest of your week and I look forward to hearing from you soon! Thank you, Lauren Nunez Lauren Nunez I Marketing I Chick-fil-A, Inc. 5200 Buffington Road I Atlanta, GA 30349 C 678.936.5914 1 chick-fil-a.com lauren.nunez@cfacorp.com 1 1 0 • I �'as •ogee 'e e► � ,.: �,..y �® • ..���` —_ .. fir, � ME- zu 6°o PW VP IOM 40 e w�o 00�1.. atom - �Zo� o4 tde�e• u� . • . o:o� •a:1 1 • iI i Chick-fil-A Cape Cod Community First 100 Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Event conducted by Chick-fil-A, Inc. for Chick-fil-A Cape Cod No additional vendors will be on property - will have a DJ/Event host onsite from approximately 6 a.m.-6 p.m. Event Date: November 30th ; Event Time: 6 a.m. November 301h - 6 p.m. Guests may arrive no earlier than 6 a.m.to register to be a part of the First 100 We will register guests up until we reach 100 participants. We will register 10 alternates who move into the 100 spaces should anyone drop out or become disqualified. If we have over 100 hopefuls at 6 a.m. on November 30th we will do a drawing for the 100 spots. They will still have to remain on the property for thefremainder of the event if selected. Guests will be allowed to use the restroom at Chick-fil-A. They will be fed breakfast, lunch, and dinner inside the restaurant while a part of the event. Games will be played to keep the group entertained in the morning and afternoon. - Security will be provided for the duration of the event by the Barnstable Police Department from 6 a.m. until 6 p.m. on November 9th. Chick-fil-A representatives will be present during the entirety of the event. The Grand Opening of the new Chick-fil-A will be at 6:00 p.m. on November 30th following the conclusion of the First 100 event. t Cape Cod Mall (owned by Simon) has allowed us to use the lot adjacent to Chick-fil-A for parking for the First 100 participants. Once their cars are parked they will not go back and forth. The security officer will patrol the parking lot.This is the only spot the participants will be allowed to park. Contact: Rick Williams, Operators birector: 508-771-0201 A fire lane will be around the restaurant so that emergency vehicles will be able to get to the building if the need arises. Campers for the First 100 will be assigned camping space in the parking lot out of the fire lane. Event Contact Person: Lauren Nunez, Grand Opening Event Planner Phone: (678) 936-5914 Email: lauren.nunez@cfacorp.com Alk <' n r: j� 'h ' •1. :ram• t .tr JI ' Ili00 1 1 f - P6 V 173 Name-Title Signature Date OF MgSs�c � yGs c� ROS S N _ 3` 511, Q IS f SSIONAL�N `s Project Title: Chick fil A Cape Cod FSU-Hyannis,MA(Store#03545) Report date: 03/16/16 Data filename: \\ad.kjww.com\kjww\kjww\Projects\2015\15.1012.00\Design\Mechanical\CFA-03545- Page 2 of 17 ComCheck.cck AlfCOMcheck Software Version 4.0.2.4 Interior Lighting Compliance Certificate Project Information Energy Code: 2012 IECC Project Title: Chick fil A CaPe Cod FSU-Hyannis, MA(Store 403545) Project Type: New Construction Construction Site: Owner/Agent: Designer/Contractor. 104 Enterprise Street. Chick fil A KJWW Engineering Consultants Hyannis, MA 02601 5200 Buffington Rd. 231 S..LaSalle St: Atlanta;GA 30349-2998 Suite 600 Additional Efficiency Package Chicago, �L 60604 Reduced interior lighting power.Requirements are implicitly enforced within interior lighting allowance calculations. Allowed Interior Lighting Power A B C D Area Category Floor Area Allowed Allowed Watts (ft2) Watts/ft2 (B X C) 1-Fast Food(Dining:cafeteria/fast food) 5493 0.90 4044 Total Allowed Watts= 4944 Proposed Interior Lighting Power A B C D E Fixture ID: Description/Lamp/Wattage Per Lamp/Ballast Lamps/ #of Fixture (C X D) Fixture Fixtures Watt. 1-Fast Food(Dining:cafeteria/fast food) D3 LED Downlight:D3:LED Downlight:Other: 1 62 35 2170 Linear Fluorescent 1:J2:1x4 Recessed:Other:Electronic: 1 6 27 162 Incandescent 1:Q:Coca Cola Sign:Incandescent 45W: 1 1 45 45 LED 2:K2:Recessed Retro:Other: 1 3 24 72 Compact Fluorescent 1:U:Pendant:Other:Electronic: 1 6 8 48 LED 3:V:Decorative:Other: 1 1 8 8 Compact Fluorescent 2:E:Basket Pendant:Other:Electronic: 1 2 38 76 Linear Fluorescent 2:A/AE:2x4 Troffer:Other:Electronic: 3 29 71 2059 Compact Fluorescent 3:F:Egg Light:Other:Electronic: 1 5 13 65 Compact Fluorescent 4:N:Cowbell light:Other:Electronic: 1 3 19 57 Linear Fluorescent 4:J:Wall Mount Above Door:Other:Electronic: 1 2 27 54 Linear Fluorescent 5:XC:Exterior Wall Mounted:Other:Electronic: 2 2 21 42 Linear Fluorescent 6:L:Surface Low Profile:Other:Electronic: 2 1 65 65 Total Proposed Wafts= 4923 Interior Lighting Compliance Statement Compliance Statement. The proposed interior lighting design represented in this document is consistent with the building plans, specifications, and other calculations submitted with this permit application.The proposed interior lighting systems have been designed to meet the 2012 IECC requirements in COMcheck Version 4.0.2.4 and to comply with the mandatory requirements listed in the Inspection Checklist. Project Title: Chick fil A Cape Cod FSU-Hyannis, MA(Store#03545) Report date: 03/16/16 Data filename: \\ad.kjww.com\kjww\kjww\Projects\2015\15.1012.00\Design\Mechanical\CFA-03545- Page 1 of 9 ComCheck.cck Name-Title Signature Date j - V q , t Q, Project Title: Chick fil A Cape Cod FSU-Hyannis, MA(Store#03545) Report date: 03/16/16 Data filename: \\ad.kjww.com\kjww\kjww\Projects\2015\15.1012.00\Design\Mechanical\CFA-03545- Page 2 of 9 ComCheck.cck IL COMcheck Software Version 4.0.2.4 Exterior Lighting Compliance. Certificate Project Information Energy Code: 2012 IECC Project Title: Chick fil A Cape Cod FSU-Hyannis,MA(Store#03545) Project Type: New Construction Exterior Lighting Zone 3(Other) Construction Site: Owner/Agent:- Designer/Contractor: 104-Enterprise Street Chick fil.A KJWW Engineering Consultants Hyannis, MA 02601 5200 Buffington Rd. 231 S. LaSalle St. Atlanta,GA30349-2998 Suite.600 Chicago,IL 60604 Allowed Exterior Lighting Power A B C D E Area/Surface Category Quantity Allowed Tradable Allowed Watts Wafts/Unit Wattage (B X C) Building per.(Illuminated length of facade wall or surface). 376 ft 3.76 No 1410 Other door(Other door(not main entry)) 4 ft of door 20 Yes 80 Total Tradable Watts(a)= 80 Total Allowed Watts= 1490 Total Allowed Supplemental Watts(b)_ 750 (a)Wattage tradeoffs are only allowed between tradable areas/surfaces. (b)A supplemental allowance equal to 750 watts may be applied toward compliance of both non-tradable and tradable areas/surfaces. Proposed Exterior Lighting Power . A B C D E Fixture ID: Description/Lamp/Wattage Per Lamp I Ballast Lamps/ #of Fixture (C X D) Fixture Fixtures Watt. Building per. Illuminated length of facade wall or surface 376 ft): Non-tradable Wattage LED 1:OL:Wall Mounted exterior:Other: 1 19 72 1368 Other door(Other door(not main entry)4 ft of door width):Tradable Wattage HID 1:XC:WI mounted exterior:Other:Standard: 2 1 21 21 Compact Fluorescent 1:OH:4"Vertical down:Triple 4-pin 32W:Electronic: 1. 4 31 124 Total Tradable Proposed Watts= 145 Exterior Lighting Compliance Statement Compliance Statement: The proposed exterior lighting design represented in this document is consistent with the building plans, specifications, and other calculations submitted with this permit application.The proposed exterior lighting systems have been designed to meet the 2012 IECC requirements in COMcheck Version 4.0.2.4 and to comply with the mandatory requirements listed in the Inspection Checklist. Name-Title Signature Date Project Title: Chick fil A Cape Cod FSU-Hyannis, MA(Store#03545) Report date: 03/16/16 Data filename: \\ad.kjww.com\kjww\kjww\Projects\2015\15.1012.00\Design\Mechanical\CFA-03545- Page 3 of 9 ComCheck.cck COMcheck Software Version 4.0.2.5 Mechanical Compliance Certificate Project Information Energy Code: 2012 IECC Project Title: Chick fil A Cape Cod FSU.-Hyannis,MA(Store#03545) Location: Barnstable,Massachusetts Climate.Zone: 5a Project Type: New:Construction Construction Site: Owner/Agent: Designer/Contractor. 104 Enterprise Street Chick fit A KJWVV Engineering Consultants Hyannis, MA 02601 5200 Buffington Rd.. 231 S.LaSalle St. Atlanta;GA 30349-2998 Suite 600 Chicago,IL 60604 Additional Efficiency Package Reduced interior lighting power.Requirements are implicitly enforced within interior lighting allowance calculations. Mechanical Systems List Quantity System Type&Description 1 HVAC System 1 (Single Zone): Heating:1 each Central.Furnace,Gas,Capacity=480 kBtu/H Proposed Efficiency=80.00%Et,Required Efficiency, 80.00%Et Cooling:1 each-Single Package DX Unit,Capacity=290 kBtu/h,Air-Cooled Condenser,Air Economizer Proposed Efficiency=10.50 EER,Required Efficiency=9.80 EER Fan System: AC#1 and ERO,2,31 Kitchen-Compliance.(Motor nameplate HP method):Passes Fans: AC#1 Supply,Constant Volume,8000 CFM,7.5 motor nameplate hp EF#1 Exhaust,Constant Volume,1700 CFM,0.5 motor nameplate hp EF#2 Exhaust,Constant Volume,701 CFM,6.3 motor nameplate hp EF#3 Exhaust,Constant Volume,804 CFM,0.3 motor nameplate_hp 1 HVAC.System 2(Single Zone): Heating:1 each-Central Furnace,.Gas,Capacity=108 kBtu/h Proposed Efficiency=80.00%Et,Required Efficiency=80.00%Et Cooling:1 each-Single Package DX Unit,Capacity=62 kBtu/h,Air-Cooled Condenser,Air Economizer Proposed Efficiency=17.10 SEER,Required Efficiency=13.00 SEER Fan System: AC#2 and EF#4 I BOH--Compliance(Motor nameplate HP method):Passes Fans: AC#2 Supply,Constant Volume,1740 CFM,1.0 motor nameplate hp EF#4 Exhaust,Constant Volume,450 CFM,0.1 motor nameplate hp 1 HVAC System 3(Single Zone): Heating:1 each-Central Furnace,Gas,Capacity=480 kBtu/h Proposed Efficiency=80.00%Et,Required Efficiency=.80.00%Et Cooling:1 each Single Package DX Unit,Capacity=239 kBtu/h,Air-Cooled Condenser,Air Economizer Proposed Efficiency=12.00 EER,Required Efficiency=10.80 EER Fan System: AC#3 I Dining--Compliance(Motor nameplate HP method):Passes Fans: AC#3 Supply,Constant Volume;7300 CFM,7.5 motor nameplate hp 1 HVAC System 4(Single Zone): Heating:1 each-Central Furnace,Gas,Capacity=65 kBtu/h Proposed Efficiency=80.00%Et,Required Efficiency=80.00%Et Project Title: Chick fil A Cape Cod FSU-Hyannis, MA(Store#03545) Report date: 03/16/16 Data filename: \\ad.kjww.com\kjww\kjww\Projects\2015\15.1012.00\Design\Mechanical\CFA-03545- Page 3 of 17 ComCheck.cck E' Quantity System Type&Description Cooling:1 each-Single Package DX Unit,Capacity=36 kBtu/h,Air-Cooled.Condenser,Air Economizer Proposed Efficiency=18.00 SEER,Required Efficiency=13.00 SEER Fan System: AC#4 Play Area Compliance(Motor nameplate HP method):Passes Fans:. AC#4 Supply,Constant Volume,1080 CFM,0.5 motor nameplate hp 1 Water Heater 1: Gas Storage Water Heater,Capacity:80 gallons,Input Rating:75.Btu/h.w/Circulation Pump Proposed Efficiency:0.68 EF,Required Efficiency:0.52 EF Mechanical Compliance Statement Compliance Statement: The proposed mechanical design represented in this document is consistent with the building plans, specifications, and other calculations submitted with this permit application.The proposed mechanical systems have been designed to meet the 2012 IECC requirements in.COMcheck Version4.0.2.5 and to Comply with the mandatory requirements listed in the Inspection Checklist. Name-Title Signature Date OF Mgssgc ROSS -` iJ 95 I ISTEQ��d`�`' SS/ONAI�N i Project Title: Chick fil A Cape Cod FSU-Hyannis, MA(Store#03545) Report date: 03/16/16 Data filename: \\ad.kjww.com\kjww\kjww\Projects\2015\15.1012.00\Design\Mechanical\CFA-03545- Page 4 of 17 ComCheck.cck i ti Structural-(S) Stud SectionProperties Desip Gross ,_ _ « . Effective 33ksiL _Effective SOksi Torsions!' - Inc Six Ma Va Yo S)a Ma Va Y( P00° Cw xo Ro TWdmm Area Weigh Inc S1oc Rx lyy RYSedum m Ht m' m c m cM c mac n ink. ro m. cM m m 0 250S137-33 0.0346 0.197 0.67 0.203 0.163 1.015 0.052 0.515 0.203 0.156 3.09 1040 1.272 0.079 0.075 -1.170 1,633 0:486 250Si37-43 0.0451 0.255 0.87 0.261 0208 1,010 0.067 0.511 0261 0.205 4.53 1350 1.260 0.173 0.094 -1.158 1.620 0.489 25OS137-54 0.0566 0.316 1.07 0.318-0.255 1.004 0.080 0.504 0.318 0.255 5.76 1656 1.250 0.318 0.244 8.22 2510 1.274 0.337 0.113 -1,150 1:608 0.488 250Si37.68 0.6713 0.390 1.33 0.386 0.309 0.994 0.095 0.495.:0.386 0.309 7.19 2D17 1.250 0.386 0.308 10.65 3057 1.251 0.661 0.134 .1.142 1.593 0.486 2505162-33 0.0346=02223'0:7fi 0235'0.188 1.027 0.087 0.624T 0235 0,180 3.55 1D40'1274' 0.089 0144=1.501=1.923 0390 250S162.43' 0.0451 0.289, 0.98 0.302 0.242 1:022 0.111 .0.620 0.302 0.240 5.22 1350 1253 4.196 0182 -1.489 1.909 0.3.92 25OS162.54 0.0566 0359 .1.22 0370 O-M 1.016 (035 0.613 0:370 0296 6.57 1656 1.250 0.370: 0.288 8.62 2510 1.267 0:383 0:219 -1482.1'.898 0391 2505162-08' 0.0713 0 443 1.51' 0.450 0360 1.D07 0.162 0:605 D.450. 0360 8.71 2017 1.250 0.450 0.357 1210'3057 1.255 0.752 0.262 -1.474 1 895 0.389 35OS162-33 0.0346 0.258 0.88 0.508 0290 1.404 0.098 0.617 0.5M 0.279 5.50 1046 1.779 0.1ffi 0.273 45 -1.351 2.0-1.339 2.031 0.563 35CS162-43 0.0451 0.334 1.14 0.654 0.374 1.400 0.125 0.612 0.654 0.372 8.08 1777 1.755 0.227 0:345 0.565 350Si62.54 0.D566 0.415 1.41 0.804 0.460 1.392 0.152 0.606 0.804 0.460 10.20 2403 1.750 0.8D4 0.447 13.37 3446 1.773 0.443 0.418 -1.331 2019 0.566 350S162-68 0.0713 0.515 1.75 0.SM O_W 13M 0.184 0.597 0.995 0.563 12.83 2959 1.750 0.985 0.557 18.89 4493 1,758 0.872.0.503 -1.321 2.OD4 0.565 3fi2S13733 0.0346 0.236. 0:80 0.479 0.264 1.424 0.059 0.501 0.479 0.254 502 1 339 1.842 0.094 0:162 •1.026 1.826 0i684 362S137:43 0.0451 0.306 1.04 0.616 0.340 1.414 0.075 0.497 0.616 0.3M 738 1777 1.926 0.2D7 0:2D4 -1.015 1.814' 0:687 362S137,r4 0.6566 0379 129 0.756 0.417 1.411 0.091 0.490 0.756 OA17 9.43 2497 1.812 0.756, 0,400 13.47 3446 1.844 0.405 0.246 -1.006 1.801 0.688 362S137 68' 06.0713�,6.470 L60 0.9222 0.509' 1.401 0.109 00480„0_92 0:509:11.87_3076 1.812_.0.922, OSOB 17.56�4661 1.814 0.797 0,294 -0.9� 1_T784_0:689 362S162-33 0.0346 .0.262 0,89 0.551 0.304 1.450 0.099 0.616 0.551 0.292.5.77 10039 1.843 0.230 0.371 -1.323 2.052 0.582 3625162 43 0.0451 0.340 1 0.710 0.392 1.445 0:127 0.611 0.710 0.389 8.46 0.230 0.371 -1323 2.052 0.585 0.422 1.44 0.873 0.48 0154 0 2 �� 0.773 0.468 14.00 3446 1.836 0.451 0.44 -1 314 2.040 0.585 362S162 68 0.0713 0.524 1.78 1.069 0.590 1.429 0186 0:596 1 07iGfBf2 1.069 0.5B4 19.80 4661 1.820 0.887 0.540 -1,305 2.024 0.585 362S220033 0:034fi 0.297 1.01 0:648 0.358 ti478 0.1770.772 GAO, 031, 6.29 1039 1.898 0:118 .O.S7P�`1770.2432 0470f 362 200 43 0:0451 0.385 1.31 0:836 0.461 11474 0 227 -0.767 -0.836 OA48 8.85 M7 1.633' '' 0.261 0.726 •1.758 2.419 0:472 362S2D0-54 0.0566 0.479 1.63 1.030 0.568 1.467 0277 0.761 1.030 0.%8 1236 2497 1.812 1.030 0.509 15.25 3446 1.8ffi OS11'0.884 -1:750 2407 0.471 362S20D 68 0.0713 0.595 202 1.265 0.698, 1.458' 0337 0.753 1.265 069815.54..3076 1212 1165 0.673 22.34 4661,1.844 1.008 1070 •1.741 2.393 0.470 4005137.33 0.0346 0:249 0:85 0.603 0.301 1.556 0.061 OA96 0,603 0.290 5.74 936 2031 0.099 0.2DO -0.987 1:9D8 0.732 400S137-43 0.0451 0.323 1.10 0.776 0.388 1551 0.078 0.491 0.776 0.382 8.43 1777 2.014 0.219 0.253 -0.976 1.897 0:735 4ODS137-54 0.0566 0.401 1.36 0.953 0.477 1.542 0.094 0.484 .0.953 0.477 10.78 2777 2.000 0.953 0.457 15AO 3446 2-034 0.428 0305 -0967 1.884 0.737 400S137-68 0.0713 0.497 1.69 1.165 0S82 1.531 0.112 0.475 1.165 0.582 13.58 3429 2,000 1.165 0.581 20.10 5196 2.002 0.842 0,365 -0.956 1.866 0.738 400S161-03 0:0346 i0.275 U.940,692 0 346 1.5- -. 0.- `6- -6332 6.5F 936 2032 - ---� 0.110 0:35f1=1.288 2.- 0.1 400S162-43 0.0451 0357 1.21 0.892 0.446 1.581 0.131 0.6D6 0.892 0.443' 9.63. 1777 2006 0.242 0:453 -1276 2121 0.638 400S162-54 0.0566 0:443 1.51 1098 0549 1:574 0159 0.600 1.098 0.549 12:18 2777 2.000 1.098 0.533 15.96 3446 2026 0.473 0.5% -1268 2108,0.638 40�162 68 0.0713� OS50 1.97_1346 6.673_1.564 0192_0:591 `1346 0.673 15.34.3429 2. _ 1 348_0`666 22.60 5196 2 009 U.124 0.689-1 258�2.092 0:639_ d00S20o-33 0.0346 0.310 1.05 0.812 0.406 1.619 0.1ffi 0.769 0.805 0382 Z16 936 2.091 0.124 0.689 •1.715 2.481 0.522 40OS200-43 0.0451 0.402 1.37 1.047 0.524 1.615 0235 0.764 1.047 0.509 10.06 1777 2.023 0.272 0.876 -1.703 2.468 0.524 400SM54 0.0566 OLM 1.70 1.292 0.646 1.6D8 0.287 0.758 1.292 0.646 14.06 2777 2000 1.292 0.580 17.36 3446 2.091 0,534 1.068 -1.695 2.456 0.524 4ODS200.68 0A713 0.622 2.12 1.589 0.795 1.599 0.349 0.750 1.589 0.795 17.68 3429 2.000 1.589 0.766 25.41 5196 2ffi5 1.054 1.295 -1.686 2.441 0.523 550S16233 0.0346 0.327, 1.11 1.456 6.536 2.112 0113 0.589 1.458 0:512 10.1,1 670 2787 0130 0.704 -1.134 2468 0.789 55M162.43 0.0451 0.424 1.44 1.0 0.685 2.107 0.145 0584 1.883 0.681 14.79 1497, 2.757 0.288 0.894 1.123'2.458 0.791. 550S162.54 0.0566 0.528 1.80 2.324 6.845 2.098 0:176 0.57.7 2.324 0.845 18.76 2799 -750 2.324 0.821 24.59.2967 2.782 0.564, UM1.114 2.445 0:792 55OS162-68 0.0713 0.657 2.24 2.661 `1.040 2086 0212 0.568 2-MI 1.040 23.72 1: 2.750 2.961 1.031 34.94 5468 2.761 IA14'1.316 -t.iO3 2.427 0.793' 60OS137-33 0.0346 0.318 1.08 1.582 0.527 2229 0.069 6.464 1.582 0.510 10.07 612 3.039 0.280 0.625 -0.813 2.411 0.884 6ODS137-43 0.0451 0.413 1.41 2.042 0.681 2.223 0:087 0.459 2.042 0.670 14.80 1358 3.018 0280 0.625 -0.813 2.411 0.886 600s137-54 0.0566 0.514 1.75 2.518 0.839 2.213 0.105 0.452 2.518 0.839 18.98 2708 3.000 2.518 0.809 27.23 270E ID42 0.549 0.757 -0.804 2.398 0.888 6ODS137-68 0.0713 0.640 2.18 3.094 1.031 2.2Do 0.125 0.443 3.094 1.031 24.05 4442 3.000 3.094 1.029 35.60 5468 3.002 1.084 0.911 -0.793 2.380 0.889 60OS137-97 01017 0:889 3.03 4.188 1.396 2170 0.159 0.422 .4.188 t396 34.48 7372 3.0D0 4.188,1.396 50.80.11.124 IMO 3`066 1.179 -0,770 2_341 0.892 - .1017 -_ -� -_ 0.137 0.851 •1.091 2595 O.BZi 60pS16233 0.0346 0.344 1:171.7930 598 2282 0:116 0.581 1.793 0 577 11:49,612 3.099' 0.148 0.57fi 2.316 0 767 16.68.1358 3:007 0303 i.082 1.081 2585 0.825 c 162-54 0.0566 0.556 1.89 860 0.953 2267 O. 2860,0.927 2776 2708 3034 0.594 1:318 1072 2.572 0.826 6DDS162.68 0.0713 0.693 236 3:525' 1.175 •2255-0218>•0,560 9 525 7 3.525 1.164 3946'5468 3 011 1.174 1.596 1.061 2554 0.828 600S162-97 0.1017 0366�329_4.797_1.599_2-M,,0283 O.541 4:797 1599 38.3T 7372 IWO 4 79 1_1.599 56 73 11/24 3 0�'3.329 2.093_1.0i9.2St8_0.830 60pS200.33 0.0346 0.379 1.29 2.075 0.692 2340 0209 0.743 2.059 0.617 12.20 612 3.135 ^0.151 1.577 -1.479 2866 0.734 6DDS200.43 0.0451 0.492 1.67 2.683 0.894 2335 0.268 0.739 2.683 0.873 17.24 1358 3.028 03M 2-012.-1.468 2.855 0.736 6DOS2OO.54 0.0566 0.613 2.09 3319 1.106 2.327 0328 0.732 3319 1.106 24.07 2708 3.000 3.319 1.002 30.01 2708 3.117 0.655 2.461 -1,459 2.842 0.737 600SX04 0.0713 0.764 260 4.101 1.367 2.316 0.400 0.723 4:101 1.367 30.42 4442 3.000 4.101 1.317 43.71 5468 3.047 1.295 2.997 -1.448 2.826 0.737 6DOS200_97 0.1017 1.067 3.63 5.612 1.871 2.293 0.530 0.705 5.612 1:871 43.49 7372 3.000_ 6.612 1.871 64.53 11124 3.000 3.679 3.981 1427 2-791 0.739 6pp$25(F43'0.0451 OS37-1.83 3.082 12127 2396 0.458'0.923 .0- 0.118 iB T4 1358 3:134 0.364 3379 1898 3:193 0.647 WOS250-54 0.0566 0:670 2�g 3.819, 1.273 2388 OS62 0.917 3.819 1.159 MD 27D8 3:115. 3.760 1.069 32.00,1 2708 3:207 0.715 4.146 1 869 3:180 0.647 60 0S250m 0:0713 0.836 2.84 4.727 1.576 2.378 6.688 0.908 4.727 1.522 30.08 4442 3.045 4.727 1342 40.19.5468 3.191' 1.416 5.071 -1.878 3.164 0.647 GODS25G-97 0.1017 1.169 3.98 6.496 2.165 2357. 0.923 0.889: 6A96 2,160 48.E 7372 3,003 1.6.496 2063 6938.11124 IOU 4.630.6,798 -1.857 3.130 0.648, 1 Web-height to thickness ratio exceeds 200. Web stiffeners are required at all support points and concentrated loads See Section Properties Table Notes on page 6. V 7 SSMA s l -- `P�3 Structural Calculations Chick-Fil-A Cape Cod, MA Client: Chipman Design Architecture 2700 South River Road, Suite 400 Des Plaines, IL 60018 Prepared by: KJWW ENGINEERING CONSULTANTS 11 01Narrenville Road,5uite�400W r -apernl{e,Illinois 60563 Ex{630}52712320 Date: 03/15/2016 1 KJWW # 15.1012.00 Registered Design Professional: 'Ov rcnski, SCottsachusetts Registrati number: 47503 SCoTTA• M WIERCINSKI STRUCIUftAL No.41503 � ;b BUILDING DEPT. MAY 02 2016 TABLE .TOWN OF BARNS TEKLA Project Job Ref. ` Section Sheet no./rev. KJWW engineering 2882 106th street 1 Des Moines,IA 50322 6alc.by Date Chk'd by Date App'd by Date G 12/23/2015 Project Name: Chick-Fil-A Cape Cod Project Number: 15.1012.00 Lead Structural Engineer: JPG Date: 2015-12-09 BUILDINGCODE.............................................................................................2009 IBC OccupancyCategory........................................................................... II Fire Ratings Roof.................................................................................................. N/Ahrs Walls.................................................................................................. hrs BUILDING DESCRIPTION: New one-story building on edge of Cape Cod. ROOF SYSTEM: The roof construction is anticipated to use steel roof deck, bar joists, and steel beams. Beams will span short width of building to steel columns, buried into exterior wall. CLADDING SYSTEM: The walls are a combination of load bearing masonry with a brick veneer and a non-load bearing wall. The exterior walls will be non-load-bearing and consist of cold formed steel stud back-up with siding. LATERAL SYSTEM: The lateral system will consist of light-gage shearwalls and/or braced or moment frames. FUTURE EXPANSION: None. ANALYSIS SUMMARY: GRAVITY DESIGN: RISA Floor is the software program that will be utilized to design the roof system. Both strength and serviceability will be checked with this program. RISA Floor will design the gravity columns. Most of the columns will be lateral columns which will be designed using RISA 3D. RISA Floor Model: Steel Frame.rfl. See attached output for design results. LATERAL DESIGN: RISA 3D is the software program that will be utilized to design the lateral systems which is comprised of steel moment frames. Both strength of the lateral columns and lateral drift of the building will be TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 2 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 12/23/2015 checked with this program. The columns reactions from this program will be taken and inputted into another RISA 3D program that will design the foundation concrete grade beams. RISA 3D Model: Lateral design.V l.r3d. See attached output for design results. FOUNDATION DESIGN: Foundations will be designed by spreadsheet. •}`• TEKLA Project Job Ref. i • Section Sheet no./rev. KJWW engineering 2882 106th street 3 Des Moines,IA 50322 £alc.by Date Chk'd by Date App'd by __fDate G 12/23/2015 DESIGN LOADS: NOTE TO USER: The first table here is for Roof Construction consisting of steel beam or bar joists. The component descriptions can be edited to be more specific for that component. Table rows cannot be deleted. Keep semicolons. The second table is for Floor Construction consisting of steel beams or bar joists with slab on deck or precast hollow core slabs. It can be edited like Roof Construction. If you have multiple roof or floor types,just copy the table and description at top. If you have wood, cast in place, CFSF, or other framing type, the old table is the 3rd option. Roof Dead Load 1 1/2" Steel Roof Deck Roof DL Min Component Gravity Gravity Seismic Roofing 6 6 6 Insulation 4 4 4 Steel roof deck 3 2 3 Structural steel 3 4 3 MEP 3 3 3 Ceiling 3 3 3 Partitions 0 0 5 Miscellaneous 0 0 0 Item#(gravity only) 0 0 0 DEAD LOAD 22 22 27 DEAD LOAD in RISA' 16 16 21 * Steel roof deck and Structural steel self weight included in RISA design. Wall Cladding: Exterior—sheathing on light-gage............................... LiveLoad- Roof................................................................................. 20psf Soil Loads Cohesive backfill ..........................................................70d +0.58 X surcharge Granular backfill.........................................................:.60d +0.50 X surcharge i TEKLA Project Job Ref. Section Sheet no./rev. KJWW engineering 2882 106th street 4 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 12/23/2015 SNOW LOAD [Drift 1-typical width] SNOW LOADING(ASCE7-05) Tedds calculation version 1.0.05 1 Building details Roof type Monopitch Width of roof b=40 ft Slope of roof 1 a=2 deg Ground snow load Ground snow load p9=35 Ib/ft2 Density of snow y=18.55 Ib/ft3 Terrain type B Exposure condition Fully exposed Exposure factor Ce 0.9 Thermal condition All Thermal factor Ct=1 Importance category II Importance factor Is= 1 Min snow load pf_min=20 Ib/ft2 Flat roof snow load pf=22.05 Ib/ft2 Warm roof slope factor(Ct<=1.0) Roof surface type Non slippery Ventilation Non ventilated Thermal resistance(R-value) R=30.00°F h ft2/Btu Roof slope factor Cs=1.00 Monoslope Sloped roof snow load ps=22.05 Ib/ft2 Left parapet Balanced snow load height hb=1.19 ft Height of left parapet hpptL=4 ft Height from left ppt he_pptL=2.81 ft Length of roof-left parapet lu_pptL=40 ft Drift height ww'-left parpet hd_IyptL=1.73 ft Drift height-left parapet hd_pptL=1.73 ft Drift width Wd_pptL=6.93 ft Drift surch. load-left ppt pd_pptL=32.12 Ib/ft2 Right parapet Height of right parapet hpptR=4 ft Height from right ppt he_pptR=2.81 ft Length of roof-right parapet Iu_pptR=40 ft Drift height ww-right parpet hd_I_pptR=1.73 ft Drift height-right parapet hd_pptR=1.73 ft Drift width Wd_pptR=6.93 ft Drift surch. load-right ppt pd_pptR=32.12 Ib/ft2 'E TEKLA Project Job Ref. Section Sheet no./rev. KJWW engineering 2882 106th street 5 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 12/23/2015 542 psf 22.0 psf Parapet ►i 6'11.1"i�- 54.2 psf 22.0 psf Parapet —►6'11.1"�— Balanced load 22.0 psf i ' 20° 40' Roof elevation Ground snow load (Fig 7-1).........................................................................pg=35 psf Exposurefactor(Table 7-2)...::..........................................................................Cc=0.9 Thermalfactor(Table 1-3)..........................................:........................................Ct= Importance factor Table 7-4 = Flat roof snow load(Eq 7-1)........................................................................pf=22 psf Rain-on-snow surcharge (see 7.10).......................................................................0 psf Minimum Design Snow load...........................................................................22 psf DesignSnow load............................................................................................22 psf i TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 6 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 12/28/2015 SNOW LOAD [Drift-2 wider width] SNOW LOADING(ASCE7-05) Tedds calculation version 1.0.05 Building details Roof type Mono.pitch Width of roof b=50 ft Slope of roof 1 a=2 deg Ground snow load Ground snow load p9=35 Ib/ft2 Density of snow y=18.55 Ib/ft3 Terrain type B Exposure condition Fully exposed Exposure factor Ce=0.9 Thermal condition All Thermal factor Ct= 1 Importance category II Importance factor Is=1 Min snow load pt_min=20 Ib/ft2 Flat roof snow load pf=22.05 Ib/ft2 Warm roof slope factor(Ct<=1.0) Roof surface type Non slippery Ventilation Non ventilated Thermal resistance(R-value) R=30.00°F h ft2/Btu Roof slope factor CS=1.00 Monoslope Sloped roof snow load ps=22.05 Ib/ft2 Left parapet Balanced snow load height hb=1.19 ft Height of left parapet hpptL=4 ft Height from left ppt hc_pptL=2.81 ft Length of roof-left parapet I _pptL=50 ft Drift height ww-left parpet hd_I_pptl.=1.95 ft Drift height-left parapet hd _pptL 1.95 ft Drift width Wd_pptL=7.81 ft Drift surch. load-left ppt pd_pptL=36.21 Ib/ft2 Right parapet Height of right parapet hpptR=4 ft Height from right ppt hc_pptR=2.81 ft Length of roof-right parapet I _pptR=50 ft Drift height ww-right parpet hd_IyptR=1.95 ft Drift height-right parapet hd_pptR=1.95 ft Drift width Wd_pptR=7.81 ft Drift surch. load-right ppt pd_pptR=36.21 lb/ft' TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 7 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 12/23/2015 58.3 psf 22.0 psf Parapet —►i 7'9.7"4- 58.3 psf 22.0 psf Parapet —►i T 9.7"�— Balanced load Z2.0 psf 4' 4 I 20° f it 50' Roof elevation Groundsnow load (Fig 7-1) _.........................................................................Pg 35 psf Exposure factor(Table 7-2)...............................................................................Ce=0.9 Thermal factor(Table 7-3) Ct= 1 Importance factor(Table 7-4) s= q Flat roof snow load (Eq 7-1)........................................................................pf=22 psf Rain-on-snow surcharge(sec 7.10).......................................................................0 psf Minimum Design Snow load...........................................................................22 psf DesignSnow load............................................................................................22 psf . a TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 8 Des Moines,IA reef Calc.by FD Chk'd by Date App'd by Date G 3/2015 SNOW LOAD [Drift-3 narrow width] SNOW LOADING(ASCE7-05) Tedds calculation version 1.0.05 Building details Roof type Monopitch Width of roof b=25 ft Slope of roof 1 a=2 deg Ground snow load Ground snow load pg=35 Ib/ftz Density of snow y=18.55 Ib/ft3 Terrain type B Exposure.condition Fully exposed Exposure factor Ce=0.9 Thermal condition All Thermal factor Ct=1 Importance category II Importance factor Is=1 Min snow load pr min=20 Ib/ftz Flat roof snow load pt=22.05 Ib/ftz Warm roof slope factor(Ct<=1.0) Roof surface type Non slippery Ventilation Non ventilated Thermal resistance(R value) R=30.00°F h ftz/Btu Roof slope factor CS=1.00 Monoslope Sloped roof snow load ps=22.05 Ib/ftz Left parapet Balanced snow load height hb=1.1.9 ft Height of left parapet hpptL=4 ft Height from left ppt he_pptL=2.81 ft Length of roof-left parapet lu_pptL=25 ft Drift height ww-left parpet hd_i_pptL=1.32 ft Drift height-left parapet hd_pptL=1.32 ft Drift width Wd_pptL=5.27 ft Drift surch. load-left ppt pd_pptL=24.44 Ib/ftz Right parapet Height of right parapet hpptR=4 ft Height from right ppt hc_pptR=2.81 ft Length of roof-right parapet Ic_pptR=25 ft Drift height ww-right parpet hd_i_pptR=1.32 ft Drift height-right parapet hd_pptR=1.32 ft Drift width Wd_pptR=5.27 ft Drift surch. load-right ppt pd_pptR=24.44 Ib/ftz 01 •h• TEKLA Project Job Ref. • Section Sheet no./rev. KJWW engineering 9 2882 106th street Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 12/23/2015 46.5 psf 22.0psf I Parapet 46.5 psf �22.0 psf Parapet Balanced load 2.0 psf T �- 4, L_2 00 V 25' Roof elevation Ground snow load (Fig 7-1).........:...............................................................pg=35 psf Exposurefactor(Table 7-2)...............................................................................Ce=0.9 Thermalfactor(Table 7-3)...................................................................................Ct= 1 Importance factor Table 7-4 = Flat roof snow load(Eq 7-1)........................................................................pf=22 psf Rain-on-snow surcharge(sec 7.10).......................................................................0 psf MinimumDesign Snow load...........................................................................22 psf DesignSnow load............................................................................................22 psf f • ?: Project Job Ref. TEKLA Section Sheet no./rev. KJWW engineering 10 2882 106th street Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 12/23/2015 SNOW LOAD [Drift-4 length] SNOW LOADING(ASCE7-05) Tedds calculation version 1.0.05 Building details Roof type Monopitch Width of roof b=128 ft Slope of roof 1 a=2 deg Ground snow load Ground snow load p9=35 Ib/ft2 Density of snow y= 18.55 Ib/ft3 Terrain type B Exposure condition Fully exposed Exposure factor Ce=0.9 Thermal condition All Thermal factor Ct= 1 Importance category II Importance factor Is=1 Min snow load pf min=20 Ib/ft2 Flat roof snow load pf=22.05 Ib/ft2 Warm roof slope factor(Ct<=1.0) Roof surface type Non slippery Ventilation Non ventilated Thermal resistance(R-value) R=30.00°F h ft2/Btu Roof slope factor Cs=1.00 Monoslope Sloped roof snow load ps=22.05 Ib/ft2 Left parapet Balanced snow load height hb=1.19 ft Height of left parapet hpptL=6 ft Height from left ppt hc_pptl-=4.81 ft Length of roof-left parapet lu_pptL=128 ft Drift height ww-left parpet hd_i_pptL=3.08 ft Drift height-left parapet hd_ppa=3.08 ft Drift width Wd_pptL=12..34 ft Drift surch. load-left ppt pd_pptL=57.22 Ib/ft2 Right parapet Height of right parapet hpptR=6 ft Height from right ppt hc_pptR=4.81 ft Length of roof-right parapet lu_pptR=128 ft Drift height ww-right parpet hd_i_pptR=3.08 ft Drift height-right parapet hd_pptR=3.08 ft Drift width Wd_pptR=12.34 ft Drift surch. load-right ppt pd_pptR=57.22 Ib/ft2 •� TEKLA Project Job Ref. • s "11 KJWW engineering Section Sheet no./rev. 2882 106th street 11 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 12/23/2015 79.3 psf 22.0 psf Parapet i�-12'4.1" 79.3 psf 22.0 psf Parapet —► i�-12'4.1" Balanced load �2.0 psf 6' 6 _1 V T L2.0° �— i �t 128' Roof elevation Ground snow load (Fig 7-1) =35 pSf Exposure factor(Table 7-2)............................................................:..................Ce=0.9 Thermal factor(Table 7-3) Ct= 1 Importance factor(Table 7-4) s= Flat roof snow load (Eq 7-1) f=22 psf Rain-on-snow surcharge(See 7.10).......................................................................0 psf Minimum Design Snow load.......................................::..................................22 psf DesignSnow load............................................................................................22 psf •�• TEKLA Project Job Ref. • KJWW engineering Section Sheet no./rev. 2882 106th street 12 Des Moines,IA 50322 £alc.by Date Chk'd by Date App'd by Date G 12/23/2015 WIND LOAD SUMMARY NOTE TO.USER: This TEDDS summary doesn't allow no output, so you will need to update the wind summary at the beginning of this section after you run the TEDDS module. Design wind speed(Fig 6-1)...................................................................V= 120 mph Importance factor(Table 6-1) ............................................................................I = 1.0 Exposureclass(sec 6.5.6.3)........................................................................................B Wind Pressure (field).......................................................................................15 psf CornerDimension.............................................................................................. 12 ft Wind Pressure (corner)....................................................................................18 psf Windpressure, MWFRS..................................................................................20 psf Wind pressure, Components............................................................................25 psf Wind pressure, roof....................................................................20 psf uplift(gross) WIND LOAD (MWFRS) WIND LOAD(ASCE 7 05) TEDDS calculation version 1.2.04 Classification summary Structure is a building Structure is Rigid Mean roof height h=16.0 ft Horizontal dimension parallel to wind L=56.0 ft Horizontal dimension normal to wind B= 130.0 ft Roof angle 0=2.0 deg Wind force resisting element is part of main wind force resisting system Structure is enclosed Structure is low rise Procedure Occupancy category(table 1-1) Category=2 Basic wind speed(sect.6.5.4) V=120.0 mph Region Hurricane Prone Importance factor(table 6-1) 1 =1.00 Exposure category(sect.6.5.6) B Wind directionality factor Kd=0.85 Topographic factor Kzt=1.00 Design procedure-analytical procedure(Method2) Velocity pressure at mean roof height`h'(ASCE 7-05,cl.6.5.10) Case of loading system(table 6-3) Case=1 Velocity pressure exposure coefficient Kn=0.70 Velocity pressure at mean roof height'h' qh=0.00256 x Kh x Kzt x Kd x V2 x I x 1 psf/mph2=21.93 psf -�• TEKLA Project Job Ref. • KJWW engineering Section Sheet no./rev- 2882 106th street 13 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 12/23/2015 Design wind pressure for MWFRS of low-rise enclosed and partially enclosed buildings(alternative procedure) Velocity pressure at mean roof height'h' qh=21.93 psf External and internal pressure coefficients(fig. 6-5) Positive internal pressure coefficient GCpi_pos=0.18 Negative internal pressure coefficient GCpi_neg=-0.18 Building surface 1 External pressure coeff. for surface 1 (fig.6-10) GCpf 1 =0.40 With positive GCpf p1_s1 =qh x((GCpf_1)-(GCpi_pos))=4.83 psf With negative GCpf pz_S1 =qh x((GCpf_i) (GCpi_neg))=12.72 psf Building surface 2 External pressure coeff. for surface 2(fig.6-10) GCpf_2=-0.69 With positive GCpf p1_S2=qh x((GCpf_2)-(GCpi_pos))=-19.08 psf With negative GCpf p2_S2=qh x((GCpf_2) (GCpi_neg))=-11.19 psf Building surface 3 External pressure coeff. for surface 3(fig.6-10) GCpf_3=-0.37 With positive GCp; p1_s3=qh x((GCpf_3)-(GCpi_pos))=-12.06 psf With negative GCpf p2_S3=qh x((GCpf_3)-(GCpi_neg))=-4.17 psf Building surface 4 External pressure coeff. for surface 4(fig. 6-10) GCpf 4=-0.29 With positive GCpf p1_S4=qh x((GCpf_4)-(GCpi±pos))=-10.31 psf With negative GCpf p2_S4=qh x((GCpf_4)-(GCpi_neg))=-2.41 psf Building surface 5 External pressure coeff. for surface 5(fig. 6-10) GCpf 5=-0.45 With positive GCpf p1_S5=qh X((GCpf_5)-(GCpi_pos))=-13.82 psf With negative GCpf p2_s5=qh x((GCpf_5)-(GCpi_neg))=-5.92 psf Building surface 6 External pressure coeff. for surface 6(fig. 6-10) GCpf_6=-0.45 With positive GCpf p1_S6=qh x((GCpf_6)-(GCpi_pos))=-13.82 psf With negative GCp; p2_S6=qh x((GCpf 6)-(GCpi_neg))=-5.92 psf Building surface 1 E External pressure coeff. for surface 1 E(fig. 6-10) GCpf_1E=0.61 With positive GCpf p1_S1E=qh x((GCpf_1E)-(GCpi_pos))=9.43 psf With negative GCpf p2_S1E=qh x((GCpf_1E)-(GCpi_neg))= 17.33 psf Building surface 2E External pressure coeff. for surface 2E(fig. 6-10) GCpf_2E=-1.07 With positive GCpf p1_S2E=qh X((GCpf 2E)-(GCpi_pos))=-27.42 psf With negative GCpf p2_S2E=qh x((GCpf_2E)-(GCpi_neg))=-19.52 psf Building surface 3E External pressure coeff. for surface 3E(fig. 6-10) GCpf_3e=-0.53 With positive GCpf p1_s3E=qh x((GCpf_3E)-(GCp;yos))=-15.57 psf With negative GCpf p2_S3E=qh x((GCpf 3E)-(GCpi_neg))=-7.68 psf TEKLA Project Job Ref. Section Sheet no./rev. KJWW engineering 2882 106th street 14 Des Moines,IA 50322 CBIC.by Date Chk'd by Date App'd by Date G 12/23/2015 Building surface 4E External pressure coeff.for surface 4E(fig. 6-10) GCPi 4E=-0.43 With positive GCpi p1_s4E=qh x((GCpt_4E)-(GCpi_pDs))=-13.38 psf With negative GCPi p2_s4E=qh x((GCpr 4E)-(GCpi_neg))=-5.48 psf Note:-As per Section 6.1.4.1,the wind load to be used in the design of the MWFRS shall be not less than 10 psf multiplied by the area of the building or structure projected onto a vertical plane normal to the wind direction. C O C Q. q Q D D 50 u O Reference B' Comer B' Of q 4 . IL � � �:Ayned A� �n8g A� Reference Comer Reference Comer �. C O { C O © -��. Reference D D Comer e B © ©41 0 Be �eMi A 2p� .S A Basic Load Cases-Transverse Direction Zone 2/3 Bounda C O Zone W Boundary C � O. O O2 O��D 0 --p e P 1 B:' © o B © d 1 �dim e o � Reference 2 A Corner A Reference Corner Referexe ��, Zone 2/3 Bounda Corner l'9 C Q Zone 213 Bounda C D . 0 �'. Q-..... O Q 1 O Q 8 ` Reference Q ..,.` D �._.. O _,_.'S_.-D Comer © B.. 50 aM' A q Basic Load Cases-Longitudinal Direction � E TEKLA Project Job Ref. KJWWengineering Section Sheet no./rev.2882 106th street 15 Des Moines,IA 50322 Calc.by Date Chk'd by Date rp-dy Date G 12/23/2015 O Q, @) 3 CD 3 © O ,O T � 5 Reference Reference Comer Comer Torsional Load Case Transverse Direction Longitudinal Direction • • • TEKLA Project Job Ref. Section Sheet no./rev. KJWW engineering 2882 106th street 16 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 12/23/2015 SEISMIC LOAD NOTE TO USER: This summary is only valid for one lateral system. If multiple systems are needed,this entire section can be copied for or you can use the stand alone TEDDS module for the other systems. SEISMIC FORCES.(ASCE 7-05) Tedds calculation version 3.0.06 Site parameters Site class D Mapped acceleration parameters at short periods Ss=0.2 at 1 sec period S1 =0.06 Site coefficientat short periods Fa=1.6 at 1 sec period Fv=2.4 Spectral response acceleration parameters at short period SMs=0.320 at 1 sec period SM1 =0.144 Design spectral acceleration parameters at short period SIDS=0.213 at 1 sec period SD1 =0.096 Seismic design category Occupancy category II Seismic design category B Approximate fundamental period Height above base to highest level of building hn=15.00 ft Building period parameter Ct Ct=0.028 Building period parameter x x=0.80 Building fundamental period T=Ta=0.244 sec Long-period transition period Tl.=6 sec Seismic response coefficient Seismic force resisting system:C_MOMENT_RESISTING_FRAME_SYSTEMS 4. Ordinary steel moment frames Response modification factor R=3 Seismic importance factor le=1.000 Seismic response coefficient CS=0.071 Seismic base shear Effective seismic weight of the structure W=180.0 kips Seismic response coefficient CS=0.071 Seismic base shear V=12.80 kips Load Combination (LRFD, ASD, or ASD alternate) ....................................LRFD Siteclass..................................................................................................................D" Short period spectral acceleration (Fig 22-1)..............................................Ss =0.200 g Long period spectral acceleration (Fig 22-2)..............................................S1 =0.060 g Short period site coefficient(Table 11.4-1) .................................................... Fa= 1.600 Long period site coefficient(Table 11.4-2).....................................................F,=2.400 Short period design acceleration, SDs eq 2/3 SMS.................................SDs=0.213 g Long period design acceleration, SDI eq 2/3 Smi.................................. SDI =0.096 g Occupancy category Table 1-1 • •h• TEKLA Project Job Ref. • Section Sheet no./rev. KJWW engineering 2882 106th street 17 Des Moines,IA 50322 Catc.by Date Chk'd by Date App'd by Date G 12/23/2015 Seismic importance factor(Table 11.5-1)........................................................Ie= 1.000 Seismic design category (Table 11.6-1 and 11.6-2)..........................................................B" Vertical structural irregularity (Table 12.3-2)..................... Plan structural irregularity(Table 12.3-1)..................................................................No Seismic force-resisting system(Table 12.2-1) "4.Ordinary steel moment frames" Redundancy coefficient(Section 12.3.4.1 and.2), p......................................................1.0 Response modification coefficient(Table 12.2-1) ..........................................R=3.000 System overstrength factor(Table 12.2-1) ....................................................Qo=3.000 Deflection amplification factor(Table 12.2-1) d=3.000 Allowable story drift(Table)2.12-1), Aa..........................................................0.020 hsx Analysis procedure (Table 12.6-1)............................................Equivalent lateral force Approximate fundamental period, Ta equals 0.03 x hn314.....................Ta=0.244 sec Upper limit coefficient(Table 12.8-1)...........................................................Cu= 1.332 Fundamental period, Tmax equals Cu x Ta..................................Cu * Ta=0.325 sec Nominal base shear coefficient, SDs x IE/R(Eq 12.8-2)..................................Csl =0.071 MinimumCs(Eq 12.8-5)...............................................................................Csminl =0.010 MaximumCs(Eq 12.8-3)..............................................................................Csmaxl =0.131 Design base shear, V equals Cs x W....................................................V=0.071 xW Seismic load additive effect, E equals p QE+ 0.2 SDs D................................................... 1.0 QE +0.043 D Seismic load counteracting effect; E equals pQE - 0.2SDsD ..................................................... 1.0QE - 0.043D T E K L A Project Job Ref. KJWW engineering Section Sheet no./rev.2882 106th street 18 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'dby Date G 12/23/2015 CONCRETE Designcode..................................................................................................ACI 318-08 Material properties: Reinforcing steel............................................................ASTM A615, Grade 60 Welded wire reinforcement.........................................................::..ASTM A185 Fiber reinforcement.......................................................................ASTM C1116 Strength properties: Footings ............................................................................................3000 psi Slabon Grade.........................................................................................3500 psi Allother concrete.................:.................................................................4000 psi FOUNDATIONS Geotechnical Report....................................................................................Feb 25, 2015 By Haley& Aldrich Allowable net soil bearing pressure...................................................................3000 psf Footing frost protection depth: Footings at perimeter of heated area...........................................................-4'-0"' Footings at unheated areas............................ Bearingstratum elevation..............................................................................................? General foundation type...................................................................continuous footings Minimum footing size Spreadfooting.............................................................................................2'-0" Continuous footing ....2'-0" STRUCTURALSTEEL Design Code&Load Combinations...........................................ASD or LRFD l 3t" ed. Material properties: Beams ...................................................................ASTM A992 (Gr. 50) W-shape columns..............................................................ASTM A992 (Gr. 50) Other rolled sections.........................................................................ASTM A36 Hollow structural sections (HSS).........................................ASTM A500, Gr. B Pipe steel ........................................................................ASTM A53, Gr. B Baseplates ...................................................................................ASTM A36 Anchor rods ....................................................................ASTM F 1554, Gr 36 Design properties—Non-composite: ULAssembly Number...........................................................................:......N/A Design properties—Columns: Maximum demand to capacity ratio .............................................................0.95 Connections: Standard bolts ASTM A3.25N, 3/4" dia. Tension control,twist-off type......................................................ASTM F1852 Bolted connection type ............................................................................Bearing Connection material.............:............................................................ASTM A36 •�• TEKLA Project Job.Ref. • Section Sheet no./rev. KJWW erigineering 2882 106th street 19 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 12/23/2015 Welding electrodes..................................................................................E70XX Typical fillet weld size..................................................................................1/4" Moment connection type..................................................................Field bolted Responsibility: ShearConnections .................................................................:.................KJ W W Braced Frame Connections......................................................................KJWW MomentConnection.................................................................................KJ W W ANCHORS Post Installed Expansion Anchors Design Basis Uncracked Concrete................................................................Hilti Kwik Bolt 3 Cracked Concrete..................................................................Hilti Kwik Bolt TZ Adhesive Anchor System Design Basis Uncracked Concrete.............:..................................................Hilti HIT HY 200 Cracked Concrete......................................................................Hilti RE 500-SD BAR JOISTS Design code.......................................................................................AISC ASD and SJI Material properties: Steel designation................................................................................ASTM A36 Design properties: Joist selection................................................................SJI K-Series load tables Unbraced length...............................................................Deck braces top chord STEEL DECK Designcode..........................................................................................SDI Load Tables Roof deck: Profile ........................................................................1.511 Wide-Rib (20 ga) Spancondition ..........................................................................................2-span COLD-FORMED STEEL Designcode.......................................................,...,..................................................AISI Material properties: 18 gauge and thinner...........................................................ASTM A653, Gr 33 16 gauge and thicker...........................................................ASTM A653, Gr 50 Connection material (> 3/16")..........................................................ASTM A36 Anchor rods..................................,.....................................ASTM F 1554, Gr 36 Bolts .......................................................................................ASTM A307 Electrodes for arc welding.....................................................AWS 5.1, E60XX Coatings: Hot-dipped ..........................................................................ASTM A525,Gr 60 Electro-plate....................................................................................ASTM A591 Aluminum-zinc...................................................................ASTM A792, Gr 40 f TEKLA Project Job Ref. Section Sheet no./rev. KJWW engineering 2882 106th street 20 Des Moines,IA 50322 £alc.by Date Chk'd by Date App'd by Date G 12/23/2015 SERVICEABILITY CRITERIA Non-composite live load........................................................................................L/360 Non-composite total load.......................................................................................L/240 Lateral drift under code wind pressure ..................................................................H/300 Total load supporting masonry..............................L/600 and A less than or eq to 0.30" • 780 CMR: STATE BOARD OF BUILDING REGULATIONS AND STANDARDS 780 CMR: MASSACHUSETTS AMENDMENTS TO THE INTERNATIONAL BUILDING CODE 2009 CHAPTER 16:STRUCTURAL DESIGN 1603.1 Add a third sentence as follows: - When structural components, assemblies, or systems are designed by a registered design professional under the control of the contractor, and said designs are not included with the application for permit,said designs shall be submitted to the building official with an application for amendment to the permit. 1603.1.7 Replace`on the community's Flood Insurance Rate Map(FIRM)'with`of the base flood elevation'. 1604.11 Add subsection: 1604.11 Snow,Wind and Earthquake Design Factors. Ground snow load,ps,basic wind speed(three second gust speed),V,and earthquake response accelerations for the maximum considered earthquake,Ss and S,;for each city and town in Massachusetts shall be as given in Table 1604.11. Exception. For ground snow load and basic wind speeds for R-3 one- and two-family dwellings of three stories or less,see 780 CMR One-and Two-family Dwellings. TABLE 1604.11 GROUND SNOW LOADS;BASIC WIND SPEEDS;EARTHQUAKE DESIGN FACTORS City/Town pR V Ss S, City/Town P" V Ss S, Abington 45 110 0.26 0.064 Medford 45 105 0.29 0.070 Acton 55 100 0.29 .0.071 Medway 55 100 0.25 0.065 Acushnet 45 110 0,23 0.058 Melrose 45 105 0.30 0.070 Adams 65 90 0.22 0.068 Mendon 55 100 0.24 0.064 Agawam 55 100 0.23 0.065 Merrimac 55 110 0.35 0.077 Alford 65 90 0.22 0.666 Methuen 55 110 0.34 0.076 Amesbury 55 110 .0.35 0.077 Middleborough 45 110 1 0.24 0.061 Amherst 55 100 0.23 0.067 Middlefield 65 100 0.22 0.066 Andover 55 110 0.32 0.075 Middleton 45 110 0.32 0.073 Aquinnah(see Gay Head) Milford 55 100 0.24 0.065 Arlington 45 105 0:29 0.069 Millbury 55 100 0.24 0.065 Ashburnham 65 100 0.27 0.072 Millis 55 100 0.25 0.065 Ashby 65 100 0.28 0.072 Millville 55 1 100 1 0.24 0.064 A hfi Id l 0. 2 0: 68 ilto 45 105 0.27 0.066 Ashland 55 100 0.25 0.066 Monroe, 65 100 0.22 0.069 t I 65 0 .2 0 so 55 100 0.23 0.065 Attleboro 55 110 0.24 0.062 Montague 65 100 0.23 0.068 Auburn 55 100 1 0.23 0.065 Monterey 65 90 0.22 0.066 Avon 55 100 0.26 0.064 Montgomery 65 100 6.23 6.066 Ayer 65 100 0.28 0.071 Mnt Washington 65 90 0.23 0.066 Barnstable 35 120 0.20 0.054 Nahant 45 1 110 0.30 0.070 Barre 55 100 0.24 0.068 Nantucket 35 120 0.15 0.047 Becket 65 90 0.22 0.066 Natick 55 100 0.26 0.067 Bedford 55 100 0.29 0.071 Needham 55 100 0.27 0.067 Belchertown 55 100 0.23 0.066 New Ashford 65 90 6.22 0.068 Bellingham 55 100 0.24 0.064 New Bedford 45 110 0.23 0.058 Belmont 45 105 0.28 ..0.069 New Braintree 55 1 100 1 0.23, 0.067 Berkley 55 110 0.24 0.061 New Marlborough 65 90 0.23 0.066 Berlin 55 100 0.26 0.068 New Salem 65 100 0.24 0.068 Bernardston 65 100 0.23 0.070 Newbury 55 110 0.35 0.076 Beverly 45 110 1 0.32 0.072 1 Newburyport 55 110 0.35 0.077 Billerica 55 100 0.30 0.072 Newton 55 105 0.27 0.068 Blackstone 65 100 0.24 0.064 Norfolk 5.5 100 0.25 0.065 Blandford 65 100 0.23 0:066 N.Adams 65 90 0.22 0.069 Bolton 55 100 0.26 0.069 N.Andover 55 110 0.33 0.075 8/6/10 780 CMR-Eighth Edition-79 The FUTURE. �® Built SMARTER' PROJEC DATE BY PROJECT NO. 1 , � � { i � I- ' I --•r- I I 4-- Al T S .1 7 i i !j► i i ( 1^ i --------------- I r , f 1 � I 6-0 i -� �� r�� The FUTURE.. Built SMARTER PROJECT DATE BY PROJECT NO. j77 717 2.55 iK -- - -- - r - I - I 2 ' Ez- I ~__-- L _ -•---�-_: !�_ �- _ 16 It -y- -I---L'Ell .53 1 i i I - : The FUTURE. Built SMARTER Q � PROJECT DATE BY PROJECT NO. I � ���3T�= �C'js�(f30.2��/d5-63��3Z•3� - --- - - - - --- -- —+--- 312-. L01'cy.s> I , (� 82 ' 3671 -PISfI i DID 1�� i3 ' 2? r 1 , � f The FUTURE., Built SMARTER' PROJEC DATE BY PROJECT NO. I I I R� �OU,rQ f r _��/� Gar - 266 P - ---T----i i �- � -- - . v I Z ,f I Y 111" 1 r-=-+ -�- - -- _4- Go _ ram- �-0- 6 - -- --F I I i I ------------- , Ii i ' I 1 I I I i i i_- .i i The FUTURE. Built SMARTER" PROJECT DATE BY PROJECT NO. -T- -T- -T- - -- - - -- -- ;- --- -- - -- 14 C ` t I -- ( T - - T-- - - 1 - ---- - j , I , I I ' 1 i 1 : f I. lmklt C) = T = e- D)OW =W1Ox1-2-3k 3k3k W14x22 -3k,11SfdOx_3WV-l-Ox1Zik 5k_ W_16x36 5 _3k_ 1.6K2-3k2-4k. 28K6_ j4k16K3SP3 ak 26K1 OSP OK1 S_� 3k 16K2SP 3 5k 28K6SP 4 4K13W x _ N .Akl6K3SP3� lk 26K9SP 5k W130 3k 16K2SP 3g 5k 28K6SP `c W131! kl6K3SP3-lk- 26K10SP- --619--WI-S tP-cek 16K2SP-3V-Fk -28K6SP 4F-_�k'-04R c\ k 24K10SP 5 - o Rk16K3SP3 - r k 26K6SP- 4--WIS k-16K6SP-4 16k- 1.8K4- -30 RKTS }4k1 - - - - - _ t 6K2SP3k- 5k- 26K10 —51se-'H1K1ik-16K2SP-3NW 0w M 4k W21x48 41t� U�IdOx k W10x12 2 ;`3k W12x14 11 _ 0 -4kl6K2-SP3%- - - _- --- --- ---- --- M- - 3 4k16K2SP3': 3kl4KlSP3 - L L - - 71-T-� -- - Member Camber and Reactions Loads: DL PreComp- PreComposite Dead Load Results for LC 2, 1.4PreDL KJWW ROOF SK- 1 JPG Chick-Fil-A Cape Cod Mar 15, 2016 at 2:35 PM 15.1012.00 Chick-Fil-A Cape Cod Chick-Fil-A Cape Cod-longer.rfl • Company KJWW Mar 15, 2016 �OORISA Designer JPG Checks Job Number 15.1012.00 Checked By. Priya T E C H N O L O G I E S Model Name Chick-Fil-A Cape Cod Horizontal Project Grid Locations Label Distance[ft] Increment ft 1 A -0 0 2 - - B _18.73--- 3 C 58.8 40.07 1 4 D 71.12 12.32 5 E 93.1 _ - 21.98 6 F - - . 121.13 __... 28.03j 7 G 134.05 12.92 Vertical Project Grid Locations Label Distance ft] Increment ft 2 _. _. 2 _ _. _ __15.29 3 2.6 21.86 6.57 4 3_. _ -26.08 _.. _- - --- 4.22 5 3.8 30.61 4.53 -6-1 4. _. _32.95 _ . _2.34. 7 5 47.91 14.96 _ 8 5.8 . - -52.73_ _ _ 4.82. - 9 6 _ 53.87 1.14 10 7 - 55.98 �.2.1u1 Hot Rolled Steel Properties Label E s il G Iksil Nu Therm(\1E..Densit [k/ft... Yield[ksi] Ry Fu[ksi] Rt 1 A992 29000 11154 .3 .65 .49 50 1.1� 65 1.1 A36 Gr.36 29000 - - - . 11154 .3---- .65 .49_ _ 36 _ 1:5_ _ 58 3 A572 Gr.50 1 29000 11154 .3 .65 .49 50 1.1 65 1.1 4 A500_Gr.B_RND 1 29000 : 111544 - .65 ._.527 42.. _. _- 1.4_ 58 5 A500 Gr.B Rect I 29000 11154 .3 .65 .527 46 1.4 58 1.3 6 _ _ A53 Gr.B 29000 11154 - 3 .65 .49 35 1:6 60 1.2 - - __. - _ 7 A1085 29000 1 11154 .3 .65 .49 50 1.4 65 1.3 Concrete Properties Label E[ksi] G ksi Nu Therm(\1E..Density[k/�ft...fclksi Lambda Flex Steel[... Shear Stee... 1 Conc3000NW 3156-F 1372 1 .15 .6 1 .145 3 1 60 60 _Conc3500NW 3469 .15-1- _ v__-. �. 1482_, .15 .6 - _ .__.145 3.5. _ _1 - 60 60 3 Conc4000NW 3644 1584 1 .15 1 .6 .145 4 1 60 60 Conc3000LW 907 _ -2085 15 _ .6 .11 ---3 .75. _._ 60_ 60 5 Conc3500LW 2252 979 .15 .6 .11 3.5 .75 60 60 15 W_ -�- Y_ : 6 Conc4000LW 2408 _1047 .6 .11 4 .75 1 60 60. Uniform Area Loads Label Additive PreDL[ps_]f PostDL[ps_Jf LL1psq LL Type VL[psf] D n Loadjpsfl 1 Office 10 50 LL-Reduce 11 1 10 _2 _Storage ---10 - 125._- -LLS-Non 11-- 50._ --- 3 Public 10 100 LL-Non 4 10 _4 Add Piping Yes-_ -- _ _ 20 _ _ LL-Non .- --- 11 20 _ 5 Roof 16 22 SL 15 10 6 Mech-1 Yes -- - -50 .._ SL _ 45 7 Mech-2 Yes 40 SL 35 RISAFloor Version 10.0.0 [\...1..\...\...\...\...\...1..\Structural\Model\Chick=Fil-A Cape Cod- longer.rfil] Page 1 Company KJWW Mar 15,2016 0ROSA Designer : JPG Checks Job Number 15.1012.00 Checked By. Priya T E C H N O L O G I E S Model Name Chick-Fil-A Cape Cod Other Uniform Area Loads Label 01-1 ps]t Direction OL2 _ Direction OL3 psfi Direction OL4rpsfl Direction 1 Office Y Y Y Y 2 Storage___ I-_ Y I --Y - Y = Y 3 Public Y - I Y Y Y 4 _Add Piping Y - -- Y- Y Y 5 Roof I Y Y Y Y - Mech-1 Y Y Y Y 7 Mech-2 I I Y Y Y Y Column Design Parameters: ROOF Label Lbyy ft Lbzz ft1 Lcomp Top[ft] Lcomp�ft] L-tor ueLft] yy Kzz Cb 1 CS1(2.6-F)_L1_... _ f- 2 CS2(2.6-G)_L1_.." 3 ICS3(3.8-G)_L1_.. 4 CS4(5.8-G)_L1_ 5 ICS5(5.87F)_L1_... 6 CS6(4-B)_L1_0 7 I CS7(5-B)_L1_L1 $ CS8(2-D)_L1_L1 9 CS9(3-D)_LL L1 - 10 CS10(1-B)_L1_1-1 11 CS11(2-C)_1-1_1-1I I - 1 12. S12(5-C)_L1_L1 13 ICS13(67E)_L1_L1I 14 CS14(2-E)_L1_01 15 CS15(3-E)__L1_L1 16 CS16(2-F)_L1_L1 I _ .. -- I 17 PS17(F)23_L1_L1 18 CS18(G)23_L1_:.. 19 CS19(1-4)_L1_L1 - - I 1.20, CS20(5-A)_L1_L1 21 ''CS21(A)23_L1_L1I - _ -- 22 S22(7)23_L1_L1 _ - - _ _ 23 S23(7-D)_L1_L1 I Column Stacks Stack Label Pro ect... Z ft] x[ft� Lift No.Length...Bot El. ..Top El.... Shape Material Function Design R...Flexural L...Shear La ... 1 CS1(2.6-F... 2.6-F 1121.13121.861 1 114.059 0 14.059 HSS4xa- A5o0... Lateral Typical N/A_ N/A _ - -- 2 CS2(2.6-... 2.6-G 134:05 21.86 1113.79 0 13.79 HSS4x4x4 A500... Lateral T ical N/A N/A 3 CS3(3.8-.., .3.8-G 134.05 30.611 1 113.79 0 113.79 HSS4x4x4 A500... Lateral Typical N/A N/A 4 CS4(5 8-... 5.8-G 134.05 52:73 1 _ _13.79_ 0_ -_13.79_ HSS4x4x4 A5oo:.: Lateral Typical N/A N/A___ 5 CS5(5.8-F.;. 5.8-F 1121.13 52.731 1 114.059 0 114.059�HSS4x4x4 IA500... Lateran Typical N/A N/A 6 CS6(4-B)... 4-B_ 18.73 32.95 ,-1__. 16.071 0 16.071 W14x61 A992 Lateral T ica l N/A N/A 7 CS7(5-B)...I 5-131 118.7347.91 1 116.071 0 16.0711 W14x61 A992 Lateral Typical I N/A N/A 1 8 csa(2 P�_: 2-D_71.12 15:29 1_ 14.98 0 14.98_ VV14x61 A992. Lateral._T pical_ N/A_ g ICS9(3-D)... 3-D 71.12{26:08 I 1 114.98 0 14.98 I W1461 A992 Lateral Typical N/A N/A 10 G81o(1--... 1-B 18.73 _ 0 1 . 1 116.071 __--0 f 6.b7 jj HSS4x4x4 A500... Gravity. T ical___-N/A N/A 11 ICS11(2-C... 2-C 58.8 15.291 1 15.2361 0 15.236 HSS4x4x4 A500... Gravity Typical N/A N/A 12-CS12(5-C.., 5-C 58.8 47.91 1 15.236 0 15.236 HSS4x4x4 A50-6 Gravity Typical N/A N/A -- - - - - 13 ICS13(s-E.. 6-E 193.1 I53.87 1 14.522 0 14.522 HSS4x4x4 A500... Gravity Typical N/A N/A - __-- _ - -.__. ____ 14 CS14(2-E.. 2- 93.-1 15.29 1 14.522 0 14.522 HSS4x4x4 A500. Gravity .T IC81 N/A N/A 15 CS15(3-E..! 3-E 193.126.08 1 14.522 0 114.522.HSS4x4x4 A500... Gravity I Typical N/A I N/A RISAFloor Version 10.0.0 [\...\.:.1..\...\...\...\...\..:\8tructural\Model\Chick-FiI=A Cape Cod- longer.rf11 Page 2 Company KJWW Mar 15,2016 ORISA Designer JPG Checks Job Number 15.1012.00 Checked By. Priya T E c x N o L o s i E s Model Name Chick-Fil-A Cape Cod Column Stacks (Continued) Stack Label Pro ect... Z ft X Lift No.Len th...Bot.El. ..To El.... Sha a Material Function Desi n R...Flexural L...Shear Lay... - - - _ CS16 2 F_. 2-F _ 121.13 - _HIS _- ------_ _16 ( _ _ 15.29 1 14.059 _0_ . 14.059 saxaxa ASoo... Gravity T kcal 17 CS17(F)2....� _F f 121.13 43.81 1 14.059 O 14 059 HSS4x4x4 A500... Gravity Typical N/A N/A 18 CS18(G)2.. --- - - ---- _(`, 134.05 16:43 1 _13.79 _ 0 13.79 HSS4x4x4 A500. . Gravity Ty picalN/A N/A 19 CS19(1-A..f 1-A f 0 0 1 116.461 0 116.4611 HSS4x4x4 A500... Gravity Typical N/A N/A 20_ CS20(5-A..1_5-A 0 -47.91 1__16.461 0 _a_ 16.461_HSS4x4x4 A500... Gravity _T icaF- -N/A N/A 21 CS21(A)2..) -A 0 32 1 116.461 0 116.4611 HSS4x4x4 A500... Gravity) Typical N/A N/A 122_CS22(7)2... - 7- 60.77.55.98 1_LL 15.195 0_ 15.195 HSSaxaxg MOO'—- Gravity -T pi 23 CS23(7-D..i 7-D 71.12 55:98 1 14.98 0 14.98 1 HSS4x4x4 A500... Gravity Typical I N/A N/A Hot Rolled:ROOF Label Length[ft] Lb_yjft] Lbzz ft Lcomp Top[Acomp Bot[ft torque... Cb Composite B-eff Left[in]B-eff Right... 1 M 1 18.46 � F ram in _2. M2 14.29 f ram in 3 M3 12.92 Framin 4 M4 8.75 Framin 5 M5 - 12.92 _ Framin �. _. .._. M6 29.45 Framin 7 M7 26.4 Framin -8 M8 . _.. 32.62 --Framinci 9 M9 14.29 Framin 10 M10 10.07 - - j - Framin 11 M11 12.42 Framin 12 M 12 24.29 -Framing 13 M13 14.95 f a Framin -14 M14 12.92 _ --; , Framin 15 1 M15 28.03 ( f Framin s . 16_ M16 2 _ 1.98 -- _ Framin _ _ ----._ _ 17 M17 5.43 Framing_�. . 18 M18 - 28.03 Framin 19 M 19 21.98 Framing M20 12.32 Framin 21 M21 I 40.07 - W_ Framin - 22 M22 V9 1 Framing 23 M23 28.5 Framin 24. _M24 18.73 Framing_ 25 M25 18.73 Framin 26 M26 40.07 Framin 27 M27 12.32 Framin _28 , M28 8.57 Framin 29 1 M29 1.0.35 Framin 30 00 _ 28.03 Framin a T 31 1 M61 12.92 Framing _32__ M62 _ 22.12 .Framin Point Loads :ROOF Point Label PreDL[, PostDL k] LL[k] LL Type Dyn Load rkI 1 N129 2 LL-Now I - l 2 N130 2 -I LL-Non RISAFloor Version 10.0.0 [\...\...\:..\...\...\...\...\..:\Structural\Model\Chick-Fil-A Cape Cod- Iong:er.rfl] Page 3 Company KJWW Mar 15,2016 �OORISA Designer JPG Checks Job Number 15.1012.00 Checked By. Priya T E c x N o C o 6 i E s Model Name. Chick-Fil-A Cape Cod Line Loads :ROOF Start Point End Point Start Pre... End PreD...Start Post..End Post..Start LL[k..End LLfk/ft] LL Type St Dyn Load[k/...End Dyn Load[... No Data to Print ... Tapered Area Loads: ROOF A Point B Point C Point D Point Base Mag[ps9 Peak Mag[ps-q Category Direction 1 N116 N115 N41 N40 0 58 SL PY - 2--j N115 . I N124 N42 - N41 _0 36_ Py 3 N117 N116 N40 N39 0 36 SL PY 4 -- N124 - N119 - - N48 N42 0 _.. _.32_. SL _ .e,PY 5 N119 N120 N50 N48 0 32 SL PY 6 N120 N65 N49_ N50 __ 0 _ - -32 SL _ PY_ 7 N65 N66 N104 N32 0 32 SL PY 8- - N123 N118 N34 _ :- N27 - 0 _:_. _ , _32_ SL_ . PY w 9 N122 N123 N27 N25 0 32 SL PY 10 N117 N118 I — _N34 N39_-- ---- - 0 25 SL__ PY 11 N122 N66 N104 N29 0 _58 SL PY 12 _ N122 N1 N25_ _. .�N29_ _... 0 _ . 58 .,..ESL PY__. Combinations Label: Sol..Cat...Fa...Cat...Fa...Cat...Fa...Cat...Fa.:.Cat...Fact..Cat...Fact..Cat...Fact..Cat...Fact..Cat...Fact..Cat...Fact... 1 IStrength(ASCE... 2 1.4PreDL Yes 3 �11PreDl-+1.6... Yes DLP...1.2 LLC. .1.6 4 � 1.4DL Yes DL 1.4 5 �12DL+ 1.0LL ... Yes l DL„ 1.2 SL I1.6 6 - - 7 Service (ASCE 7) __I 8 1.OPreDL+1.0... Yes D_LP... 1 LLC... 1 9 1.ODL+ 1.OSL Yes! DL 1 I SL 11 Combination Design Label ASIF CD Service Hot Rolle... Cold Formed Steel Wood Wood Pr... Concrete Masonry Connection 1 I Strength(ASCE- 2 1.4PreDL_. - Yes _ Yes 3 1.2PreDL+1.61-Lc Yes Yes W --Yes " .. .:_ _ _Yes 4 _1.4 DL 5 1.2DL+ 1.0LL+ 1.... Yes Yes J 6 7 I Service(ASCE 7) g 1.oFreDL+1.oLLC.. Yes_ Yes Yes - __ _ Yes. --- — 9 1 1.ODL + 1.OSL Yes Yes Yes Yes Floors Label Elevation fLt] Area Load D...Floor Ty... Deck Default Deck An... Parent Inact-Splice Dista... Splice Type 1 ROOF 1 13.79 1 Roof IFloor Be... ROOF DECK 1 90 None 1 13.79 Moment RISAF1oor Version 10.0.0 [l..\...\...\...\...\...\...\...\Structural\Model\Chick-Fil-A Cape Cod- longer.rf1] Page 4 F1 N7 F1=N711A \ 23 � §13A 25 ` - 1 N1.2A N2- Tl N3 , N18, 1 N67A . N 1,9 F1., N4 22 KJWW SK-2 JPG Chick-Fil-A Cape Cod Mar 15, 2016 at 2:36 PM 15.1012.00 Chick-Fil-A Cape Cod chick-Fii-A Cape cod-ionger.rfl e REM! The FUTURE. 1E--3®1 Built SMARTER' PROJECT DATE BY PROJECT NO. i �rtZ�cn� _� � � I ; f Chi _ �IUy�c_•�: S'R+� _-- 1 - - - - - - - : - - - , - � — -- Al , C1'?))�- � P t , t - �:n/'- G. 6 I I _ 2 qv S� c�i� _ 2 x 64 S, ' -.- rt _: 1 - 0i • ®❑ The FUTURE. ®� Built SMARTER.' PROJECT 7AT BY PROJECT NO. G � -f« - � ( 1 , �, s (JrJ Nm LJa Ur �S /l Tr - i-i4- 6 I , �- I IG �— - — I I I�.INs(�c , I I I , j 160 S � i 1� 1 4 I I it 70; P�F I Gl)nn �nSt u+ w�ri� j-=( l' -�-- —+_+ - )yl � �T -T - • ®� The FUTURE. ®®i Built SMARTER PROJECT 4�(so' ATE BY PROJECT NO. CC 'F�-,4 1116 I r 2 ' ' -� l , i j I 1 -IT- ` f it -K —f 27�7� ANY- it � _ i I 4 ; I f • ®� The FUTURE. ®®i Built SMARTER.' PROJECT DATE BY PROJECT NO. I I I I j , I i I I I T REThe FUTURE. f®®� Built SMARTER PROJECT DATE BY PROJECT NO. C c��--F c - of BY I i iI ffi ! j � Tit 6� 26. { I _ i I � 7-14 1771 Aft , T �I It i I ' - t .� • ®❑ The FUTURE. ®® Built SMARTER PROJECT DATE BY PROJECT NO. r L-71 I i I L� 2! 92 Ct� 6 cF IcIC C' 2�- c• 0,21� I T I i Gq s v I i 4- T - --4- -� I -I-- - - r - - - ®� The FUTURE. ®® Built SMARTER' PROJECT DATE BY PROJECT NO. tt I t i /l� i 6 lC 3-�1��O ►S O.I j=� S'C)- - . f j � I fo.�s' ` — I I nT 16' — )?, 'Viz , i - The FUTURE. ®®i Built SMARTER' PROJECT DAT BY PROJECT NO. ? I6 p ► pG,- ---i -- -�- I i I i St � CU t I i f i i f =�HI i ?fi OX- Uiy VL I � 4 ! 1U5C I X I I X i 7� I LLr I ! �.� Inn The FUTURE. Built SMARTER PROJECT DATE BY PROJECT NO. Fk- S I II � I I •i I � hT-• �l- j , I 1 • The FUTURE. Built SMARTER' PROJECT DATE BY PROJE T NO C C C -�� - �' 2 2 I zU►s �l'(�- I -T-r - -- 7- --T-- - - ----T--r - r- 3A - - I Mw� j -H I I i ' i I i--j- i I I ' ! , i , ' I -- -i i i --i-- -- i--i-T�V -_ I , E ' - --_ f -----I- I - I-- I Y i ' 1 ' 1 t I KJWW engineering 9 9 Base Plate and Eng:JPG Chick-Fil-A Cape Cod Footing Design Date:3/WM16 ' Time:2:01 PM Sheet: of HSS4x4(INT) HSS4x4(EXT) Col. Shape: HSS4x4 Col. Shape: HSS4x4 bf: 4.00" bf: 4.00" d: 4.00" d: 4.00" Loads: Dead: 15.8k Loads: Dead: 12.Ok Live: O.Ok Live: O.Ok Snow: 15.Ok Snow: 12.5k Service: 30.8k Service: 24.5k Ultimate: 43.Ok Ult Steel: 34.4k Base Plate: fc: 4.Oksi Base Plate: Pc: 4.6ksi Plate N. 12.00" Plate N: 12.00" Plate B: 12.00" Plate B: 8.00" Al)req= 10.5in2 Al)req= 8.4in2 Al)actual= 144.Oin2 Al)actual= 96.Oin2 m: 4.10" m: 4.10" n: 4.40" n: 2.40" t)req= 0.60" t)req= 0.75" t)actual= 0.75" tactual= 0.75" A2)req= 576in2 A2) req= 384in2 A2)actual= 576in2 A2)actual= 576in2 N.G. O.K. Footing: size)act: 2.0 x 2.0 Footing: size)req: 2.0 x 2.0 BasePlates-gravity: Columns-1 TEKLA Project Chick-Fil-A Cape Cod Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 1 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date JPG 1/17/2016 FOUNDATION ANALYSIS&DESIGN(ACI318) In accordance with AC1318-08 incorporating Errata as of August 8,2014 Tedds calculation version 3.0.00 FOUNDATION ANALYSIS Length of foundation Lx=19 ft Width of foundation Ly=7 ft Foundation area A= Lx x Ly=133 ft2 Depth of foundation h=36 in Depth of soil over foundation hso;,=12 in Density of concrete yconc= 150.0 Ib/ft3 1.576 ksf AL 1.576 ksf Column no.1 details Length of column IX, =24.00 in Width of column ly, = 12.00 in position in x-axis x, =49.50 in position in y-axis y, =42.00 in Column no.2 details Length of column IQ=24.00 in Width of column Iy2= 12.00 in position in x-axis x2=178.50 in position in y-axis y2=42.00 in Soil properties Gross allowable bearing pressure gagow_Gross.=3 ksf Density of soil yso„= 120:0 Ib/ft3 Angle of internal friction =30.0 deg Design base friction angle Nb=30.0 deg TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2682 106th street 2 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 Coefficient of base friction tan(8bb) =0.677 Passive pressure coefficient(Rankine) Kp= (1 +sin(ob))/(1 -sin(ob)) 3 Self weight FS,M=h x y.„c=450 psf Soil weight Fso;,=hso;,x ysoil= 120 psf Column no.1 loads Dead load in z Foz1 = 1.6 kips Snow load in z Fsz1 = 1.7 kips Wind load in z Fwz1 =13.1 kips Wind load in x Fwx1 =8.4 kips Dead load moment in x MDX1 =1.7 kip_ft Wind load moment in x MwX1 =56.0 kip_ft Column no.2 loads Dead load in z FDa= 12.8 kips Snow load in z Fsz2= 10.9 kips Wind load in z Fwa= 13.1 kips Wind load in x Fw.Q=8.4 kips Dead load moment in x MD.2=0.2 kip_ft Wind load moment in x MwX2=56.0 kip_ft Foundation analysis for soil and stability Load combinations per IBC 2009 1.OD(0.275) 1.OD+ 1.OS(0.346) 1.OD+ 1.OW(0.525) 1.OD+0.75L+0.75S+0.75W(0.508) Combination 1 results: 1.011) Forces on foundation Force in z-axis FdZ=yD x A x(FS,M+Fro;,) -yD x FDZ1 +yD x FDA=90.2 kips Moments on foundation Moment in x-axis, about x is 0 Max=yD x(A x(FsvA+ Fs,,;,)x Lx/2) +yD x(FDz1 x x1+MDx1) +yD x(FDzZ x x2+MDXZ) =919.1 kip_ft Moment in y-axis, about y is 0 Mdr=yD x(A x(Fsm+ Fsoil)x Ly/2) +yD x(FDz1 x y1)+yD x(FDZZ x yZ) _ 315.7 kip_ft Uplift verification Vertical force FdZ=90.21 kips PASS-Foundation is not subject to uplift Stability against overturning in x direction,moment about x is Lx Overturning moment MOTxL=yD x(MDx1) +yD x(MM) = 1.9 kip_ft Resisting moment MRxL_-1 x(yD x(Ax(Fs,,,A+ F,oii)x L),/2)) +yD x(FD7.1 x(x1-LX)) +yD x (Fpn x(xz- Lx))_-796.79 kip_ft Factor of safety abs(MRxL/MOT,,)=419.366 PASS-Overturning moment safety factor exceeds the minimum of 1.50 TEKLA Project Job Ref. KJWW engineering section sheet no./rev. 2882 106th street 3 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in x-axis edX=Md./FaZ-L./2=8.261 in Eccentricity of base reaction in y-axis edy=May/FdZ-Ly/2=0 in Pad base pressures q, =FdZx(1 -6xedX/LX-6x edy/Ly)/(Lx x Ly) =0.531 ksf q2=FdZ x(1 -6 x edX/L.+6 x edy/Ly)/(Lx x Ly)=0.531 ksf q3=FdZ x(1 +6 x edX/LX-6 x edy/Ly)/(L),x Ly)=0.826 ksf q4=Fd7.x(1 +6xedX/LX+6x edy/Ly)/(L.,x Ly) =0.826ksf Minimum base pressure qm;6=min(q,,g2,g3,q4)=0.531 ksf Maximum base pressure gmax=max(q,,g2,g3,q4) =0.826 ksf Allowable bearing capacity Allowable bearing capacity ganow=gailow—Gross=3 ksf qm./gaII.=0.275 PASS-Allowable bearing capacity exceeds design base pressure Foundation analysis for soil and stability Combination 4 results: 1.013+1.OS Forces on foundation Force in z-axis FdZ=YD x A x(Fswt+ Fso„) +yD x FDZ, +ys x FsZ, +yD x FDZ2+ys x FsZ2= 102.8 kips Moments on foundation Moment in x-axis, about x is 0 MdX=YD x(A x(FS,M+ Fson)x L./2) +-yD'x(FDZ,x X,+MDx1) +Ys x(FsZ1 x x,) +yD x(FDZ2 x x2+MDQ) +ys x(FsZ2 x x2)= 1088.2 kip_ft Moment in y-axis, about y is 0 Mdy=yD x(A x(FS,M+ Fso;,)x Ly/2)+yD x(FDZ, x y,) +ys x(FsZ,x y,) +yD x(FDZ2 x Y2) +ys x(FsZ2 x Y2) =359.8 kip_ft Uplift verification Vertical force FdZ= 102.81 kips PASS-Foundation is not subject to uplift Stability against overturning in x direction, moment about x is L. Overturning moment MOTxL=YD x(MDx1) +YD x(MD)Q) = 1.9 kip_ft Resisting moment MRxL_-1 x(yD x(A x(Fsm+ Fs gl)x Lx/2)) +yD x(FDZ,x(x,-Lx)) +ys x (FsZ1 x(x1 - Lx))+YD x(FD:2 x(X2-L),)) +ys x(FsZ2 x(X2- Lx))_-867.04 kip_ft Factor of safety abs(MR&/MOUE)=456.339 PASS Overturning moment safety factor exceeds the minimum of 1.50 Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in x-axis edX=Mdx/FdZ-LX/2=13.02 in Eccentricity of base reaction in y-axis edy= Mdy/FdZ- Ly/2=0 In ' TEKLA Project Job Ref. KJWW engineering section sheet no./rev. 2882 106th street 4 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 Pad base pressures q, =FdZ x(1 -6 x edx/Lx-6 x edy/Ly)/(Lx x Ly) _0.508 ksf q2=Fd7.x(1 -6xedx/Lx+6xedy/Ly)/(Lx x Ly) =0.508ksf q3=FdZx(1 +6xedx/Lx-6xedy/Ly)/(L.x Ly)=1.038ksf q4=FdZx(1 +6xedx/L),+6xedy/Ly)/(Lx x Ly) =1.038ksf Minimum base pressure groin=min(g1,g2,q3,q4) =0.508 ksf Maximum base pressure gmax=max(g1,g2,q3,q4) = 1.038 ksf Allowable bearing capacity Allowable bearing capacity gaoow=gauow_Gross=3 ksf gmax/gauo,=0.346 PASS-Allowable bearing capacity exceeds design base pressure Foundation analysis for soil and stability Combination 9 results: 1.01)+ 1.OW Forces on foundation Force in x-axis Fdx=yw x Fwx1 +yw x FwQ=16.8 kips Force in z-axis FdZ=yD x A x(Fs,,,+ Fso;,) +yD x FDzi + yw x Fvvz, +yD x FDi.2+yw x FwZ2= 90.2 kips Moments on foundation Moment in x-axis, about x is 0 Mdx=yD x(A x(Fr,,M+ Fsoil)x Lx/2) +yD x(FDZ1 x x1+MDx,) +yw x(Fw71 x x,+Mwx,+Fwx,x h) +yD x(FDZ2 x x2+MD¢) +yw x(FwZ2 x x2+Mwx2+Fwx2 x h) =1222.3 kip_ft Moment in y-axis, about y is 0 Mdy=yD x(A x(Fsw,+ Fs,,;,)x Ly/2) -yD x(FDZ1 x y1) +yw x(FwZ1 x y,) +yD x(FDZ2 x y2) +yw x(FwZ2 x y2) =315.7 kip_ft Uplift verification Vertical force FdZ=90.21 kips PASS-Foundation is not subject to uplift Stability against overturning in x direction, moment about x is 0 Overturning moment MOTx0=yw x(FwZ1 x xi)_-54.04 kip_ft Resisting moment MRxo=yD x(A x(F., + Fso;i)x Lx/2) -yD x(FDZ1 x x1+MDX1) +yw x (Mwx,+Fwx,x h) +yD x(FDZ2 x x2+MDx2) +yw x(FwZ2 x x2+Mw4+Fwx2 x h) _ 1276.36 kip_ft Factor of safety abs(MRxo/MoT4) =23.620 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in x direction,moment about x is Lx Overturning moment MOTxL=yD x(MDA) +yw x(FwZ1 x(x1- Lx)+Mwx,+Fwx1 x h)+yD x(Mm) + yw x(Mw)z+Fwx2 x h)=359.16 kip_ft Resisting moment MRxL_-1 x(yD x(A x(Fsvt+ Fsoil)x Lx/2))+yD x(FDZ1 x(x1 - Lx))+yD x (FDZ2 x(x2- Lx)) +yw x(FwZ2 x(x2-Lx)) _-850.83 kip_ft Factor of safety abs(MRxL/MOTxL) =2.369 PASS-Overturning moment safety factor exceeds the minimum of 1.50 TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 5 Des Moines,IA 50322 Ca lc.by Date Chk'd by Date App'd by Date G 1/17/2016 Stability against overturning in y direction, moment about y is 0 Overturning moment MoTyo=yw x(Fwz,x y,) _-45.85 kip_ft Resisting moment MRyo=yD x(A x(Fswt+ Fs.;,)x Ly/2) +yD x(FDz1 x y1) +yD x(FD72 x y2)+ yw x(Fwz2 x y2)=361.58 kip_ft Factor of safety abs(MRyo/MOTyo)=7.886 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in y direction, moment about y is Ly Overturning moment MOTyL=yw x(Fwz,x(y,-Ly)) =45.85 kip_ft Resisting moment MRyL=-1 x(yD x(A x(Fswt+ Fsa;,)x Ly/2)) +yD x(FDz,x(y1 -Ly))+yD x (Fbz2 x(y2-Ly)) +yw x(Fwz2 x(y2-Ly)) =-361.58 kip_ft Factor of safety abs(MRyL/MOTyL) =7.886 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against sliding .Resistance due to base friction FRFnct;on=max(Fdz, 0 kN)x tan(Sbb) =52.083 kips Stability against sliding in x direction Resistance from passive soil pressure FRXPass=0.5 x Kp x(h2+2 x h x hso„)x Ly x yso;,=18.9 kips Total sliding resistance FRx= FRFricdon+ FRxPass=70.983 kips Factor of safety abs(FRx/Fdx) =4.23 PASS-Sliding factor of safety exceeds the minimum of 1.50 Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in x-axis ed.= Md./Fdz-Lx/2=48.597 in Eccentricity of base reaction in y-axis edy=Mdy/Fdz-Ly/2=0 in Length of bearing in x-axis L'xd=min(Lx,3 x(Lx/2-abs(ed),))) =196.210 in Pad base pressures q, =0 ksf q2=0 ksf q3=2xFdz/(3xLyx(Lx/2-edx)) =1.576ksf q4=2xFdz/(3xLyx(Lx/2-edx)) =1.576ksf Minimum base pressure qm;n=min(q,,g2,g3,q4)=0 ksf Maximum base pressure gmax= max(g1,g2,q3,q4) =1.576 ksf Allowable bearing capacity Allowable bearing capacity gauow=gauow_cross=3 ksf gmax/gallow=0.525 PASS-Allowable bearing capacity exceeds design base pressure Foundation analysis for soil and stability Combination 12 results: 1.01)+0.75L+0.75S+0.75W Forces on foundation Force in x-axis Fdx=yw x Fwx, +yw x Fw,Q=12.6 kips Force in z-axis Fdz=yD x A x(Fswt+ Fso;i)+yD x FDz1 +ys x Fsz1 +yw x Fwz1 +yD x FDz2+Ys x Fsz2+yw x Fwz2=99.7 kips TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 6 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 Moments on foundation Moment in x-axis, about x is 0 MdX=yD x(A x(F,,,,A+ Fsoil)x Lx/2) +YD x(FDZ1 x X,+MDx,) +ys x(FsZ,x x,) +Yw X(Fwz,X X1+Mm1+Fwx1 X h) +yD x(FD72 x x2+MD)2)+ys X(FsZ2 X X2) + yw x(FwZ2 x x2+Mw),2+Fw2 x h) = 1273.4 kip_ft Moment in y-axis, about y is 0 MdY=yD x(A x(F,,,t+ Fso;,)x Ly/2)+yD x(FD7.1 x y,) +ys x(FsZ,x y,) +yw X(FwZ,XY,)+yDX(FDZ2XY2) +ysx(Fsz2XY2) +-yw x(Fw,2xy2) =348.8 kip_ft Uplift verification Vertical force FdZ=99.66 kips PASS-Foundation is not subject to uplift Stability against overturning in x direction, moment about x is 0 Overturning moment MOTxo=yw X(Fwz,x x,) =-40.53 kip_ft Resisting moment MR4=yD x(A x(Fsw,+ Fsoi,)x Lx./2) +yD x(FDZ,x x,+MDx,)+ys x(Fs,,x X,) +yw X(Mwx,+Fwx,x h) —yD x(FD,2 X X2+MD),2) +ys x(Fsa X x2) +yw X (FwZ2 x x2+Mwx2+17w)x x h) = 1313.9 kip_ft Factor of safety abs(MRxo/MOTO) =32.420 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in x direction,moment about x is Lx Overturning moment MOTXL=yD X(MDx,)+yw x(FwZ,x(x,- Lx)+Mwx,+Fwx,x h) +yD X(MD,x) + yw x(Mw)2+Fw2 x h) =269.85 kip_ft Resisting moment MRxL=-1 x(yD x(A x(Fsw,+ Fso;,)x Lx/2)) +yD x(FDZ,x(x, -Lx)) +ys x (FsZ,x(x,-L),)) +yD X(FDZ2 X(X2-Lx)) +ys x(Fsz2 X(x2- Lx))+yw X(FwZ2 X(x2- L),)) =-890.01 kip_ft Factor of safety abs(MRXL/MOT)J =3.298 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in y direction, moment about y is 0 Overturning moment MOTyo=yw x(FwZ, x y,) =-34.39 kip_ft Resisting moment MRyo=yD x(A x(Fr,,M+ F,.il)x Ly/2) +yD x(FoZ,x y,) +ys x(FsZ,x y,)+ yD X(FD.2 X Y2) +ys X(Fsz2 X Y2)+yw X(Fw12 X y2) =383.2 kip_ft Factor of safety abs(MRyo/MOTyo) = 11.144 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in y direction, moment about y is Ly Overturning moment MOTyL=yw x(FwZ,x(y,-Ly)) =34.39 kip_ft Resisting moment MRyL=-1 x(yD x(A X(Fr,,,A+ Fs,,i,)x Ly/2))+yD x(FDZ,x(y,-Ly)) +ys x (FsZ,X(Y,-Ly)) +yD X(FD;2 X(Y2-Ly)) +ys X(Fsz2 x(Y2- Ly)) +yw x(FwZ2 X(y2-Ly)) =-383.2 kip_ft Factor of safety abs(MRyL/MOTyL) = 11.144 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against sliding Resistance due to base friction FRFd«;on=max(Fd,., 0 kN)x tan(Sbb) =57.539 kips •}`• TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street. 7 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 Stability against sliding in x direction Resistance from passive soil pressure FRm-w,=0.5 x KP x(h2+2 x h x hso;,)x L,x yso;i=18.9 kips Total sliding resistance FRx=FRFriction+ FRxPass=76.439 kips Factor of safety abs(FRx/Fd)o=6.07 PASS-Sliding factor of safety exceeds the minimum of 1.50 Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in x-axis ed.=Mdx/Fd.-Lx/2=39.326 in Eccentricity of base reaction in y-axis edy=Mq/F&- L,/2=0 in Length of bearing in x-axis L'xd=min(Lx,3 x(Lx/2-abs(edx))) =224.021 in Pad base pressures q, =0 ksf q2=0 ksf q3=2xFd2/(3xLyx(Lx/2-edx)) =1.525ksf q4=2xFdz/(3xLyx(Lx/2-edx)) =1.525ksf Minimum base pressure groin=min(q,,g2,g3,q4) =0 ksf Maximum base pressure gmax=max(q,,g2,g3,q4)= 1.525 ksf Allowable bearing capacity Allowable bearing capacity gaiiow=gallow_Gross=3 ksf gmax/ga1l.=0.508 PASS-Allowable bearing capacity exceeds design base pressure FOUNDATION DESIGN(AC1318) In accordance with ACI318-08 incorporating Errata as of August 8, 2014 Material details Compressive strength of concrete fo=4000 psi Yield strength of reinforcement f,=60000 psi Cover to reinforcement cnom=3 in Concrete type Normal weight Concrete modification factor k= 1.00 Column type Concrete Analysis and design of concrete footing Load combinations per IBC 2009 1 AD(0.014) 1.2D+ 1.01-+ 1.6S(0.025) 1.2D+ 1.6S+0.8W(0.046) 1.2D+ 1.01-+0.5S+ 1.6W(INVALID) 0.9D+ 1.6W(INVALID) Combination 1 results: 1.4D Forces on foundation Ultimate force in z-axis F Z=yD x A x(Frwt+ Fso;,) +yD x FDZ, +yD x FD7.2= 126.3 kips • • Project Job Ref. TEKLA KJWW engineering Section Sheet no./rev. 2882 106th street 8 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 Moments on foundation Ultimate moment in x-axis, about x is 0 M,,x=yD x(A x(FS,,,t+ FsOjj)x Lx/2) +'yD x(FDZ,x x,+MDx,) +yD x(FD72 x x2+MD)Q) =1286.7 kip_ft Ultimate moment in y-axis, about y is 0 M y=yD x(A x(Fs + Fs.;,)x Ly/2) +yD x(FDZ, x y,) +yD x(FDZ2 x y2)_ 442.0 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis %x=M X/F Z-Lx/2=8.261 in Eccentricity of base reaction in y-axis e y=M y/F z-Ly/2=0 in Pad base pressures qu, =0.743 ksf q 2=0.743 ksf q3=FZx(1 +6xex/Lx-6xey/Ly)/(Lxx Ly) =1.156ksf q4= F=x(1 +6xex/Lx+6xey/Ly)/(L.xLy)= 1.156ksf Minimum ultimate base pressure qumin=min(qu,,qu2,qu3,qu4) =0.743 ksf Maximum ultimate base pressure qumax= max(q,,,,q 2,q 3,q 4) =1.156 ksf ®Shear(kips) Shear diagram,x axis 8.9 0 -0.3 0 2 -0.5 -2.5 9 Moment diagram,x axis Moment(kip_ft) -5.7 0 19.5 ' TEKLA Project Job Ref. KJWW engineering Section Sheetno./rev. 2882 106th street 9 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 ®Shear(kips) Shear diagram,y a bs 10.1 0 1 -10.1 ®Moment(kip_ft) Moment diagram,y axis 0 0 a�s 17.6 13.0 Moment design,x direction, positive moment Ultimate bending moment Mu.x rnax= 11.463 kip_t Tension reinforcement provided 13 No.6 bottom bars(6.4 in c/c) Area of tension reinforcement provided Asxbot.prov=5.72 in2 Minimum area of reinforcement(10.5.4) A,,.min=0.0018 x Ly x h=5.443 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) smax=min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-O..bot/2=32.625 in Depth of compression block a=Asx.bot.Prov x fy/(0.85 x f,x Ly) = 1.202 in Neutral axis factor (3, =0.85 Depth to neutral axis c=a/(3, = 1.414 in Strain in tensile reinforcement(10.3.5) et=0.003 x d/c-0.003=0.06623 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asxbot.prov x fy x(d-a/2)=915.891 kip_ft Flexural strength reduction factor 0=min(max(0.65+ (Et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity OMn=Of x Mn=824.302 kip_ft Mu.x rnax/OMn=0.014 PASS-Design moment capacity exceeds ultimate moment load Moment design,x direction, negative moment Ultimate bending moment M,,.xrn;n=-5.721 kip_ft Tension reinforcement provided 13 No.6 top bars(6.4 in c/c) Area of tension reinforcement provided Asx.top.prov=5.72 in2 T E K L A, Project Job Ref. KJM engineering section sheetno./rev. 2882 106th street 10 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 Minimum area of reinforcement(10.5.4) A,.min=0.0018 x Ly x h=5.443 in2 PASS Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) sr.= min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-%.top/2=32.625 in Depth of compression block a=Asx.top.prov x fy/(0.85 x fo x Ly) =1.202 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/R, = 1.414 in Strain in tensile reinforcement(10.3.5) et=0.003 x d/c-0.003=0.06623 PASS-Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asxtop.prov x fy x(d-a/2) =915.891 kip_ft Flexural strength reduction factor Of=min(max(0.65+(et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity OMn=0 x Mn=824.302 kip_ft abs(M,,.xmin)/OMn=0.007 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,x direction Ultimate shear force V .X=3.024 kips Depth to reinforcement dv=min(h-Cr,om-%..bot/2,h-cnom-Wxtop/2) =32.625 in Shear strength reduction factor Ov=0.75 Nominal shear capacity (Eq. 11-3) Vn=2 x?,x q(fo x 1 psi)x Ly x d,=346.649 kips Design shear capacity �Vr,_ x Vr,=259.987 kips Vu.x/OVn=0.012 PASS-Design shear capacity exceeds ultimate shear load Moment design,y direction, positive moment Ultimate bending moment M,,.y.max= 12.96 kip_ft Tension reinforcement provided 32 No.6 bottom bars(7.1 in c/c) Area of tension reinforcement provided Asy.bot.prov= 14.08 in2 Minimum area of reinforcement(10.5.4) As.min=0.0018 x L.x h= 14.774 in2 FAIL-Minimum area of reinforcement required exceeds area of reinforcement provided Maximum spacing of reinforcement(15.10.4) smax= min(3 x h, 18 in) =18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d =h-Cnom-%.bot-$y.bot/2=31.875 in Depth of compression block a=Asy.bot.prov x fy/(0.85 x f�x L.)= 1.090 in Neutral axis factor p, =0.85 Depth to neutral axis c=a/(3, = 1.282 in Strain in tensile reinforcement(10.3.5) et=0.003 x d/c-0.003=0.07158 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asy.bot.provx fy x(d-a/2) =2205.64 kip_ft Flexural strength reduction factor 0= min(max(0.65+(et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity �Mn=$r x Mn= 1985.076 kip_ft Mu.y.rn./OMn=0.007 PASS-Design moment capacity exceeds ultimate moment load .h. TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 11 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 One-way shear design,y direction Ultimate shear force V,,.y=0.99 kips Depth to reinforcement d,=min(h-Cno,n-(N.bot-$y.bot/2,h-Cnom-$y.top/2)=31.875 In Shear strength reduction factor =0.75 Nominal shear capacity(Eq. 11-3) Vn=2 x X x 1(fc x 1 psi)x Lx x dv=919.274 kips Design shear capacity OW=0,x Vn=689.456 kips V,,,y/0Vn=0.001 PASS-Design shear capacity exceeds ultimate shear load Two-way shear design at column 1 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Two-way shear design at column 2 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Analysis and design of concrete footing Combination 6 results: 1.21D+1.01L+1.6S Forces on foundation Ultimate force in z-axis F Z=yD x A x(Fs,t+ Fs,,;,)+yD x FDz, +ys x Fsz1 +yD x FDz2+ys x Fsz2= 128.4 kips Moments on foundation Ultimate moment in x-axis, about x is 0 M z=yD x(A x(Fs,,,t+ Fso;,)x Lx/2)+yD x(FDz1 x x1+MDx1) +ys x(FsZ,x x,) +yD x(FDz2 x x2+MD,¢) +ys x(Fsz2 x x2) = 1373.6 kip_ft Ultimate moment in y-axis, about y is 0 M y=yD x(A x(Fs,,,t+ Fso;i)x Ly/2) +yD x(FDz,x y,) +ys x(Fsz,x y,)+yD x(FDz2 x y2)+ys x(Fsz2 x y2) =449.4 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis eux=M,,x/Fez-Lx/2= 14.358 in Eccentricity of base reaction in y-axis e y=M y/Fez- Ly/2=0 in Pad base pressures q,,, =0.601 ksf q„2=0.601 ksf qi3=FZx(1 +6xe„x/L),-6xe„y/Ly)/(Lx x Ly) =1.33ksf q.4=Fzx(1 +6xeux/Lx+6xey/Ly)/(Lx x Ly)= 1.33ksf Minimum ultimate base pressure qumin=min(qu,,qu2,qu3,qu4) =0.601 ksf Maximum ultimate base pressure qumax=max(q,,,,q 2,q 3,q 4) = 1.33 ksf 13Stiear(kips) Shear diagram,x axis 16.4 0 -0.1 0 1 0.6 -16.4 TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 12 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 OMoment(kip_ft) Moment diagram,x axis -11.8 0 1 s�',t, { A 35.3 [I Shear(kips) Shear diagram,y axis 18.7 0 1 -18.7 ®Moment(kip_ft) Moment diagram,y axis 0 0 32.8 24.1 Moment design,x direction, positive moment Ultimate bending moment M,,.x.m.=20.723 kip_ft Tension reinforcement provided 13 No.6 bottom bars(6.4 in c/c) Area of tension reinforcement provided Asx.bot.prov=5.72 in2 Minimum area of reinforcement(10.5.4) As.min=0.0018 x Ly x h=5.443 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) smax= min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-%t t/2=32.625 in Depth of compression block a=Asx.bot.prm x fy/(0.85 x fc x Ly)= 1.202 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/R, =1.414 in I • •� TEKLA }` Project Job Ref: KJWW engineering Section Sheet no./rev. 2882 106th street 13 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 Strain in tensile reinforcement(10.3.5) Et=0.003 x d/c-0.003=0.06623 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx,bot.prov x fy x(d-a/2)=915.891 kip_ft Flexural strength reduction factor =min(max(0.65+ (Et-0.002)x(250/3), 0.65), 0.9)=0.900 Design moment capacity OM,=0 x Mn=824.302 kip_ft Mu.x.m./Wn=6.025 PASS-Design moment capacity exceeds.ultimate moment load Moment design,x direction, negative moment Ultimate bending moment Muxmin=-11.814 kip_ft Tension reinforcement provided 13 No.6 top bars(6.4 in c/c) Area of tension reinforcement provided Asxtop.prov=5.72 in2 Minimum area of reinforcement(10.5.4) As.min=0.0018 x Ly x h=5.443 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) sm,,x=min(3 x h, 18 in) =18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-cnom-$x.top/2=32.625 in Depth of compression block a=Asx.top.prov x fy/(0.85 x fc x Ly)= 1.202 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/R, = 1.414 in Strain in tensile reinforcement(10.3.5) Et=0.003 x d/c-0.003=0.06623 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.top_prov x fy x(d-a/2) =915.891 kip_ft Flexural strength reduction factor Of=min(max(0.65+(Ft-0.002)x(250/3), 0.65), 0.9).=0.900 Design moment capacity OM,=0 x Mn=824.302 kip_ft abs(Mu.xmin)/�Mn=0.014 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,x direction Ultimate shear force Vu.x=5.733 kips Depth to reinforcement dv=min(h-Cnom-Ox.bot/2,h-Cnom-yx.top/2) =32.625 In Shear strength reduction factor (�,=0.75 Nominal shear capacity(Eq. 11-3) Vn=2 x X x 4(f,x 1 psi)x Ly x dv=346.649 kips Design shear capacity OVn=(N x Vn=259.987 kips Vu.x/OVn=0.022 PASS-Design shear capacity exceeds ultimate shear load Moment design,y direction, positive moment Ultimate bending moment M�,max=24.069 kip_ft Tension reinforcement provided 32 No.6 bottom bars(7.1 in c/c) Area of tension reinforcement provided Asy.bot.prov= 14.08 in2 Minimum area of reinforcement(10.5.4) kmin=0.0018 x Lx x h= 14.774 in2 FAIL-Minimum area of reinforcement required exceeds area of reinforcement provided Maximum spacing of reinforcement(15.10.4) sm.= min(3 x h, 18 in)= 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing • �� TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 14 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 Depth to tension reinforcement d=h-Cnom-Ox.bot-yry.bot/2=31.875 in Depth of compression block a=Asy.bot.prov x fy/(0.85 x fo x Lx) =1.090 in Neutral axis factor (3, =0.85 Depth to neutral axis c=a/(3, = 1.282 in Strain in tensile reinforcement(10.3.5) et=0.003 x d/c-0.003=0.07158 PASS-Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asy.bot.prov x fy x(d-a/2)=2205.64 kip_ft Flexural strength reduction factor min(max(0.65+(et-0.002)x(250/3), 0.65), 0.9)=0.900 Design moment capacity (pMn=Of x Mn= 1985.076 kip_ft Mu.y.niax/$Mn.=0.012 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,y direction Ultimate shear force V,,.y=1.839 kips Depth to reinforcement dv=min(h-Cnom-(N.bot-Oy.bot/2,h-Cnom-vy.top/2) =31.875 In Shear strength reduction factor =0.75 Nominal shear capacity(Eq. 11-3) Vn=2 x k x 4(fo x 1 psi)x Lx x dv=919.274 kips Design shear capacity OVn=0,;x Vn=689.456 kips V,,.y/$Vn=0.003 PASS.-Design shear capacity exceeds ultimate shear load Two-way shear design at column 1 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Two-way shear design at column 2 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Analysis and design of concrete footing Combination 9 results: 1.2D+1.6S+0.8W Forces on foundation Ultimate force in x-axis F x=yw x Fwx, +yw x Fw,¢=13.4 kips Ultimate force in z-axis FDZ=yD x A x(Fswl+Fs,);,)+yD x FDz, +ys x FsZ, +yw x Fwz, +yD x FDZ2+ys x Fsz2+yw x Fwz2= 128.4 kips Moments on foundation Ultimate moment in x-axis, about x is 0 M x=yD x(A x(Fs,;,,t+ Fs.;,)x L./2) +yD x(FDz,x x,+MDx,) +ys x(FsZ,x x,) +yw x(FwZ, x x,+Mwx,+Fwx,x h) +yD x(FDz2 x x2+MDx2) +ys x(Fsz2 x x2) + yw x(Fwz2 x x2+Mw2+Fwx2 x h) = 1616.1 kip_ft Ultimate moment in y-axis, about y is 0 M y=yD x(A x(Fs,,A+ Fs.„)x Ly/2) +yD x(FDZ, x y,) +ys x(FsZ,x Y,) +yw x(Fwz,xYl) +yDx(FDz2xY2)+ysx(Fsz2xY2)+ywx(Fwz2xY2) =449.4 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis e.x=M.x/F z- L./2=37.026 in Eccentricity of base reaction in y-axis euy=May/F,,z- Ly/2=0 in •}�� TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 15 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd,by Date G. 1/17/2016 Pad base pressures q,=0.025 ksf q z=0.025 ksf q3=FZx(1 +6xex/Lx-6xey/Ly)/(LxxLy)=1.906ksf qu4=FZx(1 +6xex/Lx+6xey/Ly)/(LxxLy) = 1.906ksf Minimum ultimate base pressure qumin=min(q„1,q 2,q 3,q 4) =0.025 ksf Maximum ultimate base pressure qumax=max(q 1,q 2,q 3,q 4)= 1.906 ksf BShear(kips) Shear diagram,x axis 13.9 00.0 0 13.1 -9.5 -29.4 Moment diagram,x axis Moment(kip_ft) -31.2 11 -19.7 0 1 35.8 64.7 '. [I Shear(kips) Shear diagram,y axis 18.7 0 1 -18.7 TEKLA Project Job Ref. • KJWW engineering Section Sheet no./rev. 2882 106th street 16 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by bate G 1/17/2016 ®Moment(kip_ft) Moment diagram,,y axis 0 0 W 32.8 Moment design,x direction, positive moment Ultimate bending moment M,,.x.max=38.251 kip_ft Tension reinforcement provided 13 No.6 bottom bars(6.4 in c/c) Area of tension reinforcement provided Asxbot.prov=5.72 in2 Minimum area of reinforcement(10.5.4) As.min=0.0018 x Ly x h=5.443 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) sm,,=min(3 x h, 18 in)= 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-ya.bot/2=32.625 In Depth of compression block a=Asx.botp.v x fy/(0.85 x fc x Ly) =1.202 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/(i, = 1.414 in Strain in tensile reinforcement(10.3.5) Et=0.003 x d/c-0.003=0.06623 PASS-Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.bot.prov x fy x(d-a/2)=915.891 kip_ft Flexural strength reduction factor of=min(max(0.65+(et-0.002)x(250/3), 0.65), 0.9)=0.900 Design moment capacity OMn=Of x Mn=824.302 kip_ft Mu.x.max/OM,=0.046 PASS-Design moment capacity exceeds ultimate moment load Moment design,x direction, negative moment Ultimate bending moment Mu.x,min=-19.657 kip_ft Tension reinforcement provided 13 No.6 top bars(6.4 in c/c) Area of tension reinforcement provided Asx.top.prov=5.72 in2 Minimum area of reinforcement(10.5.4) As.min=0.0018 x Ly x h=5.443 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) sm.=min(3 x h, 18 in) =18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-cnom-yx,top/2=32.625 In Depth of compression block a=Asx.top.prov x fy/(0.85 x fo x Ly) = 1.202 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/R, = 1.414 in Strain in tensile reinforcement(10.3.5) Et=0.003 x d/c-0.003=0.06623 TEKLA Project Job Ref. • KJWW engineering Section Sheet no./rev. 2882 106th street 17 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.top.prov x fy x(d-a/2)=915.891 kip_ft Flexural strength reduction factor of=min(max(0.65+ (Et-0.002)x(250/3), 0.65), 0.9)=0.900 Design moment capacity OMn=Of x Mn=824.302 kip_ft abs(Mu.x.min)/OMn=0.024 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,x direction Ultimate shear force Vu,x=9.083 kips Depth to reinforcement dv=min(h-Cnom-Ox.bai/2,h-Cnom-Ox.top/2) =32.625 In Shear strength reduction factor 0 =0.75 Nominal shear capacity(Eq. 11-3) Vn=2 x k x�(fo x 1 psi)x Ly x dv=346.649 kips Design shear capacity On=w x Vn=259.987 kips Vv.),/Wn=0.035 PASS-Design shear capacity exceeds ultimate shear load Moment design,y direction, positive moment Ultimate bending moment Mu.y,m.=24.069 kip_ft Tension reinforcement provided 32 No.6 bottom bars(7.1 in c/c) Area of tension reinforcement provided Asy.bot.prov= 14.08 inz Minimum area of reinforcement(10.5.4) As.min=0.0018 x L.x h= 14.774 inz FAIL-Minimum area of reinforcement required exceeds area of reinforcement provided Maximum spacing of reinforcement(15.10A). sm.=min(3 x h, 18 in) =18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-ya.bot-�y.bot/2=31.875 in Depth of compression block a=Asy.bot.prov x fy/(0.85 x fc x Lx)= 1.090 in Neutral axis factor Q, =0.85 Depth to neutral axis c=a/R, = 1.282 in Strain in tensile reinforcement(10.3.5) at=0.003 x d/c-0.003=0.07158 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asy.bot.prov x fy x(d-a/2)=2205.64 kip_ft Flexural strength reduction factor Of=min(max(0.65+(Et-0.002)x(250/3), 0.65), 0.9)=0.900 Design moment capacity OMn=Of x Mn=.1985.076 kip_ft Mu.y.m./OMn=0.012 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,y direction Ultimate shear force V,,.y=1.839 kips Depth to reinforcement dv=min(h-Cnom-1pk.bot yy.bot/2,h-Cnom-�y.top/2) =31.875 in Shear strength reduction factor 0,=0.75 Nominal shear capacity(Eq. 11-3) Vn=2 x k x 4(fo x 1 psi)x Lx x dv=919.274 kips Design shear capacity OW=0 x Vn=689.456 kips Vu.y l OVn=0.003 PASS Design shear capacity exceeds ultimate shear load TEKLA Project Job Ref. KJWW engineering section sheetno./rev. 2882 1 osth street 18 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 Two-way shear design at column I Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Two-way shear design at column 2 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Analysis and design of concrete footing Combination 12 results: 1.21)+1.01L+0.5S+C6W Forces on foundation Ultimate force in x-axis F,x=yw x Fw,, +yw x Fwx2=26.9 kips Ultimate force in z-axis FuZ=yD x A x(Fs,M+ Fso;,) +yD x FDZ, +ys x Fs,, +yw x FwZ, +yD x FDz2+ys x Fsz2+ywx Fwz2= 114.6kips Moments on foundation Ultimate moment in x-axis, about x is 0 Mux=yD x(A x(Fswt+Fs,,;,)x Lx/2)+yD x(FDZ,x x,+MDx,) +ys x(FsZ,x x,) +yw x(:Fwzt x x,+Mwx,+Fwxi x h) +yD x(FDz2 x x2+MDx2) +ys x(Fsz2 x x2) + yw x(Fwz2 x x2+Mwx2+Fw,¢x h) = 1672.6 kip_ft Ultimate moment in y-axis, about y is 0 Muy=yD x(A x(Fs,,A+ Fsoe)x Ly/2) +yD x(FDZ,x y,)+ys x(FsZ,x y,) +yw x(Fwzl x Yl) +yD x(FDz2 x Y2)+ys x(Fsz2 x Y2) +yw x(Fwz2 x y2)=400.9 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis eux= Mux/Fuz-Lx/2=61.22 in Eccentricity of base reaction in y-axis euy=Muy/Fuz-Ly/2=0 in Length of bearing in x-axis L'xu=min(Lx,3 x(Lx/2-abs(eu)())) =.158.340 in Pad base pressures qu, =0 ksf qu2=0 ksf qua=2x Fuz/(3xLyx(L),/2-eux)) =2.48ksf qua=2x Fuz/(3xLyx(Lx/2-eu),)) =2.48ksf Minimum ultimate base pressure qumin=min(qu1,qu2,q.3,qu4) =0 ksf Maximum ultimate base pressure qumax= max(qu1,qu2,qu3,qu4) =2,48 ksf Calculation Invalid-Foundation uplift occurs under column Analysis and design of concrete footing Combination 15 results: 0.91)+1.6W Forces on foundation Ultimate force in x-axis Fux=yw x Fwx, +yw x Fwx2=26.9 kips Ultimate force in z-axis FDZ=yD x A x(Fs„t+ Fr,&) +yD x FDZ, +yw x FwZ, +yD x FDz2+yw x FwZ2= 81.2 kips Moments on foundation Ultimate moment in x-axis, about x is 0 Mux=yD x(A x(Fsm+Fsoll)x Lx/2)+yD x(FpZ,x x,+MDx,) +yw x(FWZ,x x1+Mwx1+Fw1 x h) +yD x(FDz2 x x2+MD¢) +yw x(Fwz2 x x2+Mw¢+Fw.,a x h) 1312.3 kip_ft TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 19 Des Moines,IA 50322 Catc.by Date Chk'd by Date App'd by Date G 1/17/2016 Ultimate moment in y-axis, about y is 0 M y=yD x(A x(Fswt+ Fsoa)x Ly/2)+yD x(FDz1 x y1) +Yw x(Fwz1 x y1) +yD x(FDz2 x Y2) +yw x(Fw,2 x Y2) =284.2 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis e.X=M X/F.z- L./2=70.969 in Eccentricity of base reaction in y-axis euy=M y/F,,z- Ly/2=0 in Length of bearing in x-axis L',,,=min(LX,3 x(LX/2-abs(e,,X))) =102.093 in Pad base pressures qu, =0 ksf q2=0ksf q113=2xFuz/(3xLyx(L),/2-eX)) =2.727ksf qA=2xFz/(3xLyx(LX/2-e )))=2.727ksf Minimum ultimate base pressure qumin=min(qu1,qu2,qu3,qu4) =0 ksf Maximum ultimate base pressure qumax=max(q 1,q 2,q 3,q 4)=2.727 ksf Calculation Invalid-Foundation uplift occurs under column —32 No.6 bottom bars(7.1 in c/c) 4 No.6 top bars(73.7 in c/c) I 13 No.6 bottom bars(6.4 in c/c) 13 No.6 tap bars(6.4 in c/c) TEKLA Project Chick-Fil-A Cape Cod Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 1 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date JPG 1/7/2016 FOUNDATION ANALYSIS&DESIGN(ACI318) In accordance with ACI318-08 incorporating Errata as of August 8, 2014 Tedds calculation version 3.0.00 FOUNDATION ANALYSIS Length of foundation LX=20 ft Width of foundation Ly=6 ft Foundation area A=L.x Ly= 120 ft2 Depth of foundation h =30 in Depth of soil over foundation hso;,=12 in Density of concrete yoo = 150.0 Ib/ft3 1.8 ksf Y 0 X I WM1jjjflE=1=� 1�jja� 1:8 ksf Column no.1 details Length of column IX, =24.00 in Width of column ly, = 12.00 in position in x-axis x, =30.00 in position in y-axis y, =36.00 in Column no.2 details Length of column 1,2=24.00 in Width of column lye=12.00 in position in x-axis x2=210.00 in position in y-axis y2=36.00 in Soil properties Gross allowable bearing pressure gallow_cross=3 ksf Density of soil yso;,= 120.0 Ib/ft3 Angle of internal friction O=30.0 deg Design base friction angle 8bb=30.0 deg Coefficient of base friction tan(8bb) =0.577 Passive pressure coefficient(Rankine) Kp= (1 +sin(ob))/(1 -sin(Q) =3 TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 2 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Self weight FS,M=h x yconc=375 psf Soil weight Fso;,=hso;,x yso;,=120 psf Column no.1 loads Dead.load in z FDz,=4.9 kips Snow load in z FsZ, =5.5 kips Wind load in z FwZ, _-7.5 kips Wind load in x Fwx, =6A kips Dead load moment in x MDX, =1.9 kip_ft Wind load moment in x Mm, =45.0 kip_ft Column no.2 loads Dead load in z FDZ2= 18.7 kips Snow load in z FSZ2=21.9 kips Wind load in z Fw,2=7.5 kips Wind load in x Fw4=6.1 kips Dead load moment in x MDx2= 1.1 kip_ft Wind load moment in x Mwx2=45.0 kip_ft Foundation analysis for soil and stability Load combinations per IBC 2009 1.OD(0.319) 1.OD+ 1.OS(0.498) 1.01D+ 1.OW(0.520) 1.OD+0.75L+0.75S+0.75W(0.600) Combination 1 results: 1.011) Forces on foundation Force in z-axis FdZ=yD x A x(Fr,,A+ Fs,);,) +yD x FDz, +yD x FDz2=83.0 kips Moments on foundation Moment in x-axis, about x is 0 MdX=yd x(A x(FsHn+ Fsoil)x L./2) +yD x(FDZ,x x,+MDx,) +YD x(FDZ2 x x2+MDx2) =936.5 kip_ft Moment in y-axis, about y is 0 Mdy=yp x(A x(Fs A+ Fso;,)x Ly/2) +yD x(FDZ, x y,) +yD x(FDZ2 x y2) _ 249.0 kip_ft Uplift verification Vertical force FdZ=83 kips PASS-Foundation is not subject to uplift Stability against overturning in x direction,moment about x is L. Overturning moment MO7xL=YD x(MDA) +YD x(MDx2) =3 kip_ft Resisting moment MRxL_-1 x(yD x(A x(Fsm+.Frei,)x Lx/2)) +yD x(FDZ,x(x, - Lx)) +yD x (FDZ2 x(x2-L),)) _-726.5 kip_ft Factor of safety abs(MRxL/MorxL) =242.167 PASS-Overturning moment safety factor exceeds the minimum of 1.50 TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 3 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in x-axis edx=Md./FdZ- Lx/2= 15.398 in Eccentricity of base reaction in y-axis edy=Mdy/FdZ- Ly/2=0 in Pad base pressures q, =FdZx(1 -6xedx/L),-6x edy/Ly)/(L.x Ly) =0.425ksf q2=FdZ x(1 -6 x ed./Lx+6 x edy/Ly)/(Lx x Ly) =0.425 ksf q3=Fdzx(1 +6xedx/Lx-6xedy/Ly)/(LxxLy)=0.958ksf q4=Fdzx(1 +6xedX/Lx+6x edy/Ly)/(Lx x Ly) =0.958ksf Minimum base pressure qm;n=min(q,,g2,g3,q4) =0.425 ksf Maximum base pressure gmax=max(q,,g2,g3,q4) =0.958 ksf Allowable bearing capacity Allowable bearing capacity ganow=gailow-Gross=3 ksf gmax/gauow=0.319 PASS-Allowable bearing capacity exceeds design base pressure Foundation.analysis for soil and stability Combination 4 results: 1.OD+1.OS Forces on foundation Force in z-axis FdZ=yD x A x(Fs,t+ Fsoil) +7D x FDz, +7s x Fs,, +7D x FDz2+ys x Fsz2= 110.4 kips Moments on foundation Moment in x-axis, about x is 0 Max=yD x(A x(Fsm+ Fs,,;,)x Lx/2) +yD x(FD7.1 x x,+MDx,) +7s x(FsZ,x x,) +yD x(FDz2 x x2+MD)2) +ys x(Fsz2 x x2)= 1333.5 kip_ft Moment in y-axis, about y is 0 Mdy=yD x(A x(Fs,M+ Fson)x Ly/2) +yD x(FDz1 x y,) +ys x(Fsz1 x y1) +yD x(FDz2 x y2) +7s x(Fsz2 x y2) =331.2 kip_ft Uplift verification Vertical force Fdz=110.4 kips PASS-Foundation is not subject to uplift Stability against overturning in x direction, moment about x is Lx Overturning moment MOTxI=7D x(MDx,) +yD x(MD)2) =3 kip_ft Resisting moment MRxL=-1 x(yD x(A x(Fsm+ Fsoil)x Lx/2)) +yD x(FDZ,x(x, -L),)) +7s x (Fs71 x(xi - Lx)) +7D x(FDz2 x(x2-Lx)) +7s x(Fsz2 x(x2- Lx))_-877.5 kip_ft Factor of safety abs(MRxL/MOTxL) =292.500 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in x-axis edx=Mdx/FdZ-Lx/2=24.946 in Eccentricity of base reaction in y-axis edy= Mdy/Fdz- Ly/2=0 in • • • TEKLA Project ect Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 4 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Pad base pressures q,=FdZ x(1 -6 x edx/Lx-6 x edy/Ly)/(L,,x Ly) 0.346 ksf q2=FdZx(1 -6xed./Lx+6x edy/Ly)/(L.x Ly) =0.346ksf q3=FdZx(1 +6x ed./Lx-6x edy/Ly)/(L x Ly) =1.494ksf q4= Fd,x(1 +6 x edx/Lx+6 x edy/Ly)/(Lx x Ly) =1.494 ksf Minimum base pressure q,nin=min(q,,g2,g3,g4) =0.346 ksf Maximum base pressure gmax=max(q,,g2,g3,q4) =1.494 ksf Allowable bearing capacity Allowable bearing capacity ganow=ganow—doss=3 ksf gmax/gauow=0.498 PASS-Allowable bearing capacity exceeds design base pressure Foundation analysis for soil and stability Combination 9 results: 1.013+1.OW Forces on foundation Force in x-axis Fdx=yw x Fw,t +yw x Fw,Q=12.2 kips Force in z-axis FdZ=yD x A x(Fswt+ Fsoa)+yD x FDZ, +yw x FwZ, +yD x FD72+yw x Fw72= 83.0 kips Moments on foundation Moment in x-axis, about x is 0 Mdx=yD x(A x(Fsm+ FsoB)x Lx/2) +yD x(FDz1 x X1+MD.,) +yw x(FwZ1 x x1+Mwx,+Fwx1 x h) +yD x(FDZ2 x X2+MDx2) +yw x(Fwz2 x X2+Mw,¢+Fw,a x h) =1169.5 kip_ft Moment in y-axis, about y is 0 Mdy=yD x(A x(Fswt+ Fs(,;,)x Ly/2) +yD x(FDz,x y1)+yw x(FwZ1 x y,) +yD x(FDZ2 x y2) +yw x(Fwz2 x y2) =249.0 kip_ft Uplift verification Vertical force FdZ=83 kips PASS-Foundation is not subject to uplift Stability against overturning in x direction,moment about x is 0 Overturning moment MoT.o=yw x(Fw:,x xi) =-18.75 kip_ft Resisting moment MRxo=yD x(A x(Fswt+ Fso;,)x Lx/2) +yD x(FDZ,x x,+MDx,) +yW x (Mwx,+Fw., x h) +yo x(FDZ2 x X2+MDx2) +yw x(Fwz2 x X2+Mw,2+Fwx2 x h) _ 1188.25 kip_ft Factor of safety abs(MR4/MOT.o) =63.373 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in x direction,moment about x is Lx Overturning moment MOT4=yo x(MD.,) +yw x(Fw,x(x,- Lx)+Mwx,+Fwx,x h) +yD x(MD)2) + yw x(Mwx2+Fw2 x h) =254.75 kip_ft Resisting moment MRxL=-1 x(yD x(A x(Fs A+ Fsoil)x Lx/2)) +yD x(FDZ,x(x, -Lx)) +yD x (FDa x(x2- L.)) +yw x(Fwz2 x(x2-Lx)) =-745.25 kip_ft Factor of safety abs(MRxL/MoT),L) =2.925 PASS-Overturning moment safety factor exceeds the minimum of 1.50 TEKLA Project - Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 5 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Stability against overturning in y direction,moment about y is 0 Overturning moment MorYo=7w x(Fwzt x y,) _-22.5 kip_ft Resisting moment MRyo=yD x(A x(Fs,,,A+ Fso;,)x Ly/2)+yD x(FDZ, x y,) +yD x(FDZ2 x y2) + yw x(Fwz2 x y2)=271.5 kip_ft Factor of safety abs(MRyo/MorYo)= 12.067 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in y direction,moment about y is Ly Overturning moment MoTYL=yw x(Fwz, x(y, -Ly)) =22.5 kip_ft Resisting moment MRyL=-1 x(yD x(A x(Fs,,,,r+ Fs,,;,)x Ly/2)) +yD x(FDZ,x(y,-Ly))+yD x (FD.2 x(Y2-Ly)) +7w x(Fwz2 x(Y2-Ly)) =-271.5 kip_ft Factor of safety abs(MRyL/MoTyL)=12.067 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against sliding Resistance due to base friction FRFnction=max(FdZ, 0 kN)x tan(5bb) =47.92 kips Stability against sliding in x direction Resistance from passive soil pressure FRxPass=0.5 x KP x(h2+2 x h x hso;,)x Ly x yso;,=12.15 kips Total sliding resistance FRx= FRFrlctlon+FRxPass=%07 kips Factor of safety abs(FRx/Fdx) =4.92 PASS-Sliding factor of safety exceeds the minimum of 1.50 Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in x-axis edx=Mdx/Fdz-Lx/2=49.084 in Eccentricity of base reaction in y-axis edy=Mdy/FdZ- Ly/2=0 in Length of bearing in x-axis L'xd=min(L),,3 x(Lx/2-abs(edx))) =212.747 in Pad base pressures q, =0 ksf q2=0 ksf q3=2xFdZ/(3xLyx(Lx/2-edx)) =1.561 ksf q4=2xFdZ/(3xLyx(L.,/2-edx)) =1.561 ksf Minimum base pressure groin=min(q,,g2,g3,q4) =0 ksf Maximum base pressure gmax=max(q,,g2,g3,q4)= 1.561 ksf Allowable bearing capacity Allowable bearing capacity gauow=gauow_Gross=3 ksf gmax/ga1bw=0.520 PASS-Allowable bearing capacity exceeds design base pressure Foundation analysis for soil and stability Combination 12 results: 1.013+0.75L+0.75S+0.75W Forces on foundation Force in x-axis Fdx=yw x Fwx, +yw x Fwx2=9.2 kips Force in z-axis FdZ=yD x A x(Fst+ Fsou) +yD x FDZ, +ys x Fs71 +1w x Fwz1 +yD x Foz2+ys x Fs,2+yw x FwZ2= 103.6 kips TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 6 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Moments on foundation Moment in x-axis, about is 0 Mdx=yD x(A x(Fs,,,t+Fsoii)x Lx/2)+yD x(FDZ,x x,+MDA) +ys x(Fs,,x x,) +yw x(FwZ,x x,+Mwx,+Fwx,x h) +yD x(FD.2 X x2+MD)12) +ys x(FsZ2 x x2) + yw x(Fw,2 x x2+Mwx2+Fw)Q x h)= 1409.0 kip_ft Moment in y-axis, about y is 0 MdY=yD x(A x(F,,,,,,+ Fso;i)x Ly/2)+yD x(FDZ, x y,) +ys x(FsZ,x y,)+y V x(FwZ,xY,) +yDx(FDZ2xY2) +ysx(Fsz2XY2) +ywx(FwZ2xy2) =310.6 kip_ft Uplift verification Vertical force FdZ=103.55 kips PASS-Foundation is not subject to uplift Stability against overturning in x direction,moment about x is 0 Overturning moment MoTxo=yw x(FwZ,x x,) =-14.06 kip_ft Resisting moment MRxO=yD x(A x(F,,m+ Fs.il)x Lx/2) +yD x(FDZi x x,+MDx1) +ys x(FsZ,x x,)+'yw x(Mwx,+Fwx, x h) +yD x(FDZ2 x x2+MD)2) +ys x(FsZ2 x x2) +yw x (FwZ2 x x2+Mw)Q+Fw,Q x h)= 1423.06 kip_ft Factor of safety abs(MRxo/MoTxo) = 101.196 PASS Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in x direction,moment about x is Lx Overturning moment MOTxL=yD x(MDx,) +yw x(FwZ, x(x,- Lx)+Mwx,+Fwx,x h) +YD x(MD)Q) + yw x(Mw)2+Fw2 x h) =191.81 kip_ft Resisting moment MRxL=-1 x(yD x(A x(Fswt+ Fs,);,)x Lx/2)) +yD x(FDZ,x(x,.-Lx)) +ys x (FsZ,x(x,-Lx)) +yD x(Fc)a x(x2-Lx)) +ys x(Fsa x(x2- Lx)) +yw x(Fwz2 x(x2-Lx)) =-853.81 kip_ft Factor of safety abs(MRxL/Morn) =4.451 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in y direction, moment about y is 0 Overturning moment MoTYo=yw x(FwZ,x y,)=-16.87 kip_ft Resisting moment MRyo=yD x(A x(F,,M+ Fs,,;,)x Ly/2) +yD x(FoZ, x y,) +ys x(FsZ,x y,) + yD x(FDZ2 x Y2) +ys x(FsZ2 x Y2) +yw x(FwZ2 x y2) =327.52 kip_ft Factor of safety abs(MRyo/MoTyo).= 19.409 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in y direction,moment about y is Ly Overturning moment MoTYL=yW x(FwZ,x(y,-Ly)) = 16.87 kip_ft Resisting moment MRyL=-1 x(yD x(A x(Fs A+ Fsa;,)x Ly/2)) +yD x(FDZ,x(y,- Ly)) +ys x (FsZ,x(Y,-Ly)) +yD x(FDz2 x(Y2- Ly))+ys x(FsZz x(Y2-Ly))+yw x(Fw,2 x(y2-LY))_-327.52 kip_ft Factor of safety abs(MRyL/MoTyL)= 19.409 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against sliding Resistance due to base friction FUnction=max(FdZ, 0 kN)x tan(8bb)=59.785 kips TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 7 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Stability against sliding in x direction Resistance from passive soil pressure FRxPass=0.5 x KP x(h2+2 x h x hsoil)x Ly x yso;i= 12.15 kips Total sliding resistance FRx= FRFriction+FRxPass=71.935 kips Factor of safety abs(FR),/Fdx) =7.86 PASS-Sliding factor of safety exceeds the minimum of 1.50 Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in x-axis edx=Mdx/F&- Lx/2=43.283 in Eccentricity of base reaction in y-axis edy=Mdy/FdZ- Ly/2=0 in Length of bearing in x-axis L'xd=min(L),,3 x(Lx/2-abs(edx))) =230.150 in Pad base pressures q, =0 ksf q2=0 ksf q3=2 x Fd,/(3 x Ly x(Lx/2-edx)) =1.8 ksf q4=2xFd,./(3xLyx(L./2-ed),))= 1.8ksf Minimum base pressure qm,n=min(q,,g2,g3,g4) =0 ksf Maximum base pressure gmax= max(q,,g2,g3,q4) =1.8 ksf Allowable bearing capacity Allowable bearing capacity gauow=gauow—Gross=3 ksf gmax/gall.=0.600 PASS-Allowable bearing capacity exceeds design base pressure FOUNDATION DESIGN(ACI318) In accordance with ACI318-08 incorporating Errata as of August 8, 2014 Material details Compressive strength of concrete f c=4000 psi Yield strength of reinforcement fy=60000 psi Cover to reinforcement cnom=3 in Concrete type Normal weight Concrete modification factor k=1.00 Column type Concrete Analysis and design of concrete footing Load combinations per IBC 2009 1.4D(0.089) 1.2D+ 1.01-+ 1.6S(0.195) 1.2D+ 1.6S+0.8W(0.222) 1.2D+ 1.01-+0.5S+ 1.6W(INVALID) 0.9D+ 1.6W(INVALID) Combination 1 results: 1.413 Forces on foundation Ultimate force in z-axis F Z=yp x A x(Fswt+Fsoil) +yp x FDz, +yp x FDz2= 116.2 kips ' TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 8 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Moments on foundation Ultimate moment in x-axis, about x is 0 Mix=yD x(A x(Fs,m+Fro;,)x L./2)+yD x(FDz1 x X1+MDx1) +yD x(FD72 x X2+MD,Q) =1311.1 kip_ft Ultimate moment in y-axis, about.y is 0 M y=yD x(A x(Fs,M+ Fs.;,)x Ly/2) +yD x(FDz,x y,) +yD x(FDz2 x y2)_ 348.6 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis e.X=M X/F.z-L./2= 15.398 in Eccentricity of base reaction in y-axis e y=M y/F,,z- Ly/2=0 in Pad base pressures q,,, =0.596 ksf qu2=0.596 ksf q3=Fzx(1 +6xeX/L.-6xey/Ly)/(Lxx Ly) =1.341 ksf q4=Fzx(1 +6xex/L.,+6xe„y/Ly)/(L x Ly)= 1.341ksf Minimum ultimate base pressure qumin=min(qu,,qu2,qu3,qu4) =0.596 ksf Maximum ultimate base pressure qumax= max(qu,,qu2,qu3,qu4)= 1.341 ksf Shear diagram,x axis t3 Shear(kips) 17.2 0 0 76 9 ®Moment(kip_ft) Moment diagram,x axis -41.4 � a 0 1 6 TEKLA Project Job Ref. KJWW engineering Section Sheetno./rev. 2882 106th street 9 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Shear diagram,y axis []Shear(kips) 16.5 0 0 1 -16.5 Moment diagram,y axis []Moment(kip_ft) 0 0 24.8 Moment design,x direction, positive moment Ultimate bending moment W.max=4.249 kip_ft Tension reinforcement provided 9 No.6 bottom bars(8.1 in c/c) Area of tension reinforcement provided Aszbot.prov=3.96 in2 Minimum area of reinforcement(10.5.4) Aa.min=0.0018 x Ly x h=3.888 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) smax=min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-Oy.bot-4.bot/2=25.875 in Depth of compression block a=Asxbot.prov x fy/(0.85 x fc x Ly) =0.971 in Neutral axis factor 01 =0.85 Depth to neutral axis c=a/(3, = 1.142 in Strain in tensile reinforcement(10.3.5) r-t=0.003 x d/c-0.003=0.06498 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.bot.prov x fy x(d-a/2) =502.716 kip_ft Flexural strength reduction factor Of= min(max(0.65+ (st-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity OM,=Of x Mn=452.445 kip_ft Mu.x.max/OMn=0.009 PASS-Design moment capacity exceeds ultimate moment load Moment design,x direction, negative moment Ultimate bending moment Mux.min=-41.415 klp_ft Tension reinforcement provided 9 No.6 top bars(8.1 in c/c) Area of tension reinforcement provided Asx.top.prov=3.96 in2 TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 10 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Minimum area of reinforcement(10.5.4) As.min=0.0018 x Ly x h=3.888 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) sm.=min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-%.top/2=26.625 In Depth of compression block a=Asx.top.prov x fy/(0.85 x fc x Ly)=0.971 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/R, = 1.142 in Strain in tensile reinforcement(10.3.5) Et=0.003 x d/c-0.003=0.06695 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.top.prov x fy x(d-a/2) =517.566 kip_ft Flexural strength reduction factor = min(max(0.65+ (Et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity OMn=0 x Mn=465.81 kip_ft abs(Mu.xmin)/OMn=0.089 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,x direction Ultimate shear force Vu.x=7.762 kips Depth to reinforcement dv=min(h-Cnom-(x.bot/2,h-Cnom-ya.top/2) =26.625 In Shear strength reduction factor 0,=0.75 Nominal shear capacity(Eq. 11-3) Vn=2 x X x 1(fc x 1 psi)x Ly x dv=242.483 kips Design shear capacity OVn=0,x Vn=181.863 kips Vu.x/OVn=0.043 PASS-Design shear capacity exceeds ultimate shear load Moment design,y direction, positive moment Ultimate bending moment Mu.y.max= 17.208 kip_ft Tension reinforcement provided 30 No.6 bottom bars(8.0 in c/c) Area of tension reinforcement provided Asy.bot.p,,= 13.2 in2 Minimum area of reinforcement(10.5.4) As.min=0.0018 x Lx x h=12.96 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) smax=min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-�,,.bot/2=26.625 in Depth of compression block a=Asy.bot.prov x fy/(0.85 x fc x Lx) =0.971 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/p, = 1.142 in Strain in tensile reinforcement(10.3.5) Et=0.003 x d/c-0.003=0.06695 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asy.bot.prov x fy x(d-a/2)= 1725.221 kip_ft Flexural strength reduction factor Of= min(max(0.65+(Et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity OMn=0 x Mn= 1552.699 kip_ft M;,.y.max/0Mn=0.011 PASS-Design moment capacity exceeds ultimate moment load TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 11 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 One-way shear design,y direction Ultimate shear force V,,.y=1.893 kips Depth to reinforcement dv=min(h-cnam-O�.bot-Oy.bot/2,h-Cnom-oy_toP/2) =25.875 In Shear strength reduction factor Ov=0.75 Nominal shear capacity(Eq. 11-3) Vn=2 x X x 4(fc x 1 psi)x Lx x dv=785.51 kips Design shear capacity OVn=Ov x Vn=589.132 kips V,,.y/OVn=0.003 PASS-Design shear capacity exceeds ultimate shear load Two-way shear design at column 1 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Two-way shear design at column 2 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Analysis and design of concrete footing Combination 6 results: 1.2D+1.OL+1.6S Forces on foundation Ultimate force in z-axis F Z=yoxAx(Fr,,M+ Fso;,)+yDxFDZ1 +ysxFs7.1 +yDxFD,2+ysxFsz2= 143.4 kips Moments on foundation Ultimate moment in x-axis, about x is 0 M,,x=yD x(A x(Fsvt+ Fso;,)x L),/2) +yD x(FDZ1 x x1+MDX,) +ys x(FsZ,x x1) +yD x(FD72 x x2+MD)Q) +ys x(Fs,.2 x x2) = 1759.0 kip_ft Ultimate moment in y-axis, about y is 0 M y=yD x(A x(Fsv,4+ Fso;,)x Ly/2)+yD x(FDZ, x y,) +ys x(Fsz,x y,) +yD x(FDZ2 x y2)+ys x(Fsz2 x y2) =430.3 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis e,,x= M./F Z-Lx/2=27.156 in Eccentricity of base reaction in y-axis e,y= M y/F Z- Ly/2=0 in Pad base pressures q,,, =0.384 ksf q 2=0.384 ksf qu3=F Z x(1 +6 x eux/Lx-6 x euy Ly)/(Lx x Ly) =2.007 ksf qi4=F7.x(1 +6xe„x/Lx+6xey Ly)/(L.xL,) =2.007ksf Minimum ultimate base pressure qumin=min(qu1,qu2,qu3,qu4) =0.384 ksf Maximum ultimate base pressure qumax=max(q 1,q 2,q 3,q 4) =2.007 ksf Shear(kips) Shear diagram,x axis 37.8 0 0 -16.3 19.7 TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 12 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Moment diagram,x axis [3Moment(kip_ft) -90.9 0 0 1 w. 25.2 [3 Shear(kips) Shear diagram,y aps 36.1 0 0 1 -36.1 Moment diagram,y axis Moment(kip_ft) 0 0 �' � .: ,. 3.spa .k Moment design,x direction, positive moment Ultimate bending moment Mu,xm.=9.263 kip_ft Tension reinforcement provided 9 No.6 bottom bars(8.1 in c/c) Area of tension reinforcement provided Asx.bot.prov=3.96 in2 Minimum area of reinforcement(10.5.4) As.min=0.0018 x Ly x h=3.888 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) smax=min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-(x:bot/2=26.625 In Depth of compression block a=Asx.bot.prov x fy/(0.85 x fo x Ly) =0.971 in Neutral axis factor p, =0.85 Depth to neutral axis c=a/R, = 1.142 in }ti TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2862 106th street 13 Des Moines,IA 50322 Cale.by Date Chk'd by. Date App'd by Date G 1/7/2016 Strain in tensile reinforcement(10.3.5) rt=0.003 x d/c-0.003=0.06695 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.bot.prov x fy x(d-a/2) =517.566 kip_ft Flexural strength reduction factor 0=min(max(0.65+(et-0.002)x(250/3), 0.65), 0.9)=0.900 Design moment capacity OM,=Of x Mn=465.81 kip_ft Mu.x.max/Wn=0.020 PASS-Design moment capacity exceeds ultimate moment load Moment design,x direction, negative moment Ultimate bending moment Mu.x.min=-90.881 kip_ft Tension reinforcement provided 9 No.6 top bars(8.1 in c/c) Area of tension reinforcement provided Asxtop.prov=3.96 in2 Minimum area of reinforcement(10.5.4) As.min=0.0018 x LY x h=3.888 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) sm.=min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-cnom-atop/2=26.625 in Depth of compression block a=Asxtop.prov x fy/(0.85 x Po x LY)=0.971 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/(3, = 1.142 in Strain in tensile reinforcement(10.3.5) rt=0.003 x d/c-0.003=0.06695 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.top.p.x fy x(d-a/2) =517.566 kip_ft Flexural strength reduction factor 0=min(max(0.65+ (et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity OMn=Of x Mn=465.81 kip_ft abs(Muxmin)/�Mn=0.195 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,x direction Ultimate shear force V,,,x= 17.317 kips Depth to reinforcement dv=min(h-Cnom-(N.bot/2,h-Cnom-Ox.top/2) =26.625 in Shear strength reduction factor 0,=0.75 Nominal shear capacity(Eq. 11-3) Vn=2 x X x 4(fr x 1 psi)x L,x d,=242.483 kips Design shear capacity OVn=0 x Vn= 181.863 kips Vu.x/OVn=0.095 PASS-Design shear capacity exceeds ultimate shear load Moment design,y direction, positive moment Ultimate bending moment M,,.y.max=37.583 kip_ft Tension reinforcement provided 30 No.6 bottom bars(8.0 in c/c) Area of tension reinforcement provided Asy.bot.prov= 13.2 in2 Minimum area of reinforcement(10.5.4) As.min=0.0018 x L.x h= 12.96 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) smax=min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 14 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Depth to tension reinforcement d=h-Cnom-O�,,.bot/2=26.625 in Depth of co impression block a=Asy.bot.prov x fy/(0.85 x fc x Lx)=0.971 in Neutral axis factor P, =0.85 Depth to neutral axis c=a/(3, =1.142 in Strain in tensile reinforcement(10.3.5) Et=0.003 x d/c-0.003=0.06695 PASS-Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asy.bot.prov x fy x(d-a/2) = 1726.221 kip_ft Flexural strength reduction factor 0=min(max(0.65+(et-0.002)x(250/3), 0.65), 0.9)=0.900 Design moment capacity OMn=Of x Mn= 1552.699 kip_ft Mu.y.max/01VI,,_,0.024 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,y direction Ultimate shear force Vu.y=4.134 kips Depth to reinforcement dv=min(h.-Cnom-kbot-Oy.bot/2,h-Cnom-0,.,,/2) =25.875 In Shear strength reduction factor 0,=0.75 Nominal shear capacity(Eq. 11-3) Vn=2 x X x 4(fc x 1 psi)x Lx x dv=785.51 kips Design shear capacity OVn=0,,x Vn=589.132 kips Vu.y l OVn=0.007 PASS-Design shear capacity exceeds ultimate shear load Two-way shear design at column 1 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Two-way shear design at column 2 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Analysis and design of concrete footing Combination 9 results: 1.21)+1.6S+0.8W Forces on foundation Ultimate force in x-axis F.=yw x Fvvx, +Yw x Fwx2=9.8 kips Ultimate force in z-axis Fuz=yD x A x(Fsv t+ Fs.;,) +yD x FDz1 +ys x Fsz, +Yw x Fwz, +yD x FDz2+ys x Fsz2+yw x Fwz2= 143.4 kips Moments on foundation Ultimate moment in x-axis, about x is 0 Mux=yD x(A x(Fswt+Fsoil)x Lx/2) +yD x(FDZ,x x,+MDx1) +Ys x(FsZ,x x,) +Yw x(Fwz,x x,+Mwx,+Fwx,x h) +yD x(FDz2 x x2+MDx2)+Ys x(Fsz2 x x2) + yw x(Fwz2 x x2+Mwx2+Fw2 x h) = 1945.4 kip_ft Ultimate moment in y-axis, about y is 0 Muy=yD x(A x(Fswt+ Fsgil)x Ly/2) +yD x(FDz, x Y,) +Ys x(Fsz,x Yt) +Yw x(Fwz,x Y,) +yD x(FDz2 x Y2) +Ys x(Fsz2 x Y2) +Yw x(Fwz2 x y2)=430.3 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis eux=Mux/Fuz-Lx/2=42.75 in Eccentricity of base reaction in y-axis euy=Muy/Fuz- Ly/2=0 in Length of bearing in x-axis L'xu= min(Lx,3 x(Lx/2-abs(eux))) =231.751 in TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 15 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Pad base pressures q1 =0ksf qz=0ksf q3=2xFZ/(3xLyx(L),/2-e .))=2.476ksf q4=2xFZ/(3xLyx(L./2-ex))=2.476ksf Minimum ultimate base pressure qurn;n=min(qu1,qu2,qu3,qu4) =0 ksf Maximum ultimate base pressure qumax=max(q 1,q 2,q 3,q 4) =2.476 ksf Shear diagram,x axis [3Shear(kips) 37.7 0 0 25.8 Moment diagram,x axis []Moment(kip_ft) -103.5 -104 £ �a s 0 0 1 �t 40.1- Shear diagram,y abs Shear(kips) 38.6 0 0 1 -38.6 TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 16 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Moment diagram,y axis ®Moment(kip_ft) 0 0 POW„s % 5T 9 Moment design,x direction, positive moment Ultimate bending moment Mu.x max=22.823 kip_ft Tension reinforcement provided 9 No.6 bottom bars(8.1 in c/c) Area of tension reinforcement provided Asxbocprov=3.96 in2 Minimum area of reinforcement(10.5.4) As.min=0.0018 x Ly x h=3.888 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) smax=min(3 x h, 18 in)= 18 in. PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-gx.bot/2=26.625 in Depth of compression block a=Asxbot.prm x fy/(0.85 x fc x Ly) =0.971 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/R, = 1.142 in Strain in tensile reinforcement(10.3.5) et=0.003 x d/c-0.003=0.06695 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.bot.prov x fy x(d-a/2) =517.566 kip_ft Flexural strength reduction factor min(max(0.65+ (et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity OM,=Of x Mn=465.81 kip_ft Mu.x.max/�Mn=0.049 PASS-Design moment capacity exceeds ultimate moment load Moment design,x direction, negative moment Ultimate bending moment Mu.x.m,n=-103.472 kip_ft Tension reinforcement provided 9 No.6 top bars(8.1 in c/c) Area of tension reinforcement.provided Asx.top.prov=3.96 in2 Minimum area of reinforcement(10.5.4) A.,.min=0.0018 x Ly x h=3.888 in2 PASS Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) smax=min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-cnom-$x.top/2=26.625 in Depth of compression block a=Asx.top.prov x fy/(0.85 x fo x Ly) =0.971 in Neutral axis factor p, =0.85 Depth to neutral axis c=a/R, = 1.142 in Strain in tensile reinforcement(10.3.5) et=0.003 x d/c-0.003=0.06695 •� TEKLA Project Job Ref. • KJM engineering Section Sheetno./rev. 2882 106th street 17 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.top.prov x fy x(d-a/2) =517.566 kip_ft Flexural strength reduction factor 0= min(max(0.65+(et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity OMn=0 x Mn=465.81 kip_ft abs(Mu.x,m)/OMn=0,222 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,x direction Ultimate shear force Vu.x= 19.344 kips Depth to reinforcement d�=min(h-Cnom-Obot/2,h-Cnom-Ox.top/2) =26.625 In Shear strength reduction factor 0,=0.75 Nominal shear capacity(Eq. 11-3) V =2 x X x q(f,x 1 psi)x Ly x d,=242.483 kips Design shear capacity OVn=0,x Vn= 181.863 kips Vu.x/OVn=0.106 PASS-Design shear capacity exceeds ultimate shear load Moment design,y direction, positive moment Ultimate bending moment M,,,y.max=40.242 kip_ft Tension reinforcement provided 30 No.6 bottom bars(8.0 in c/c) Area of tension reinforcement provided Asy.bot,prov= 13.2 in2 Minimum area of reinforcement(10.5.4) Amin=0.0018 x L.x h= 12.96 in2 PASS-Area of reinforcement provided exceeds minimum . Maximum spacing of reinforcement(15.10.4) sm.=min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-%.bot-$y.bot/2=25.875 in Depth of compression block a=Asy.bot.prov x fy/(0.85 x fc x Lx) =0.971 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/(3, = 1.142 in Strain in tensile reinforcement(10.3.5) et=0.003 x d/c-0.003=0.06498 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asy.bot.prov x fy x(d-a/2) = 1675.721 kip_ft Flexural strength reduction factor 0=min(max(0.65+ (et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity OMn=0 x Mn= 1508.149 kip_ft Mu.y.max/�Mn=0.027 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,y direction Ultimate shear force Vu.y=4.427 kips Depth to reinforcement d�=min(h-Cnom-$x bot-Oy.bot/2,h-Cnom-0.t(,p/2) =25.875 In Shear strength reduction factor 0,=0.75 Nominal shear capacity (Eq. 11-3) Vn=2 x X x�(fc x 1 psi)x Lx x dv=785.51 kips Design shear capacity OVn=0,x Vn=589.132 kips Vu.y/OVn=0.008 PASS-Design shear capacity exceeds ultimate shear load TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 18 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Two-way shear design at column 1 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Two-way shear design at column 2 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Analysis and design of concrete footing Combination 12 results: 1.213+1.01L+0.5S+1.6W Forces on foundation Ultimate force in x-axis Fix=yw x Fwx, +yw x Fw,Q=19.5 kips Ultimate force in z-axis Fsz=yD x A x(Fs,,,t+ Fs.;,) +yD x FDz, +ys x Fsz, +yw x Fwz, +yD x FDz2+ys x Fsz2+yw x Fwz2=113.3 kips Moments on foundation Ultimate moment in x-axis, about x is 0 Mux=yD x(A x(Fs,,t+ Fso;,)x Lx/2)+yD x(FDz,x x,+MN1) +ys x(Fsz,x x,) +yw x(Fwzt x x,+Mwx,+Fwx,x h) +yD x(FDz2 x x2+MD)Q) +ys x(Fsz2 x x2) + yw x(Fwz2 x x2+Mwx2+Fw)Q x h) = 1695.1 kip_ft Ultimate moment in y-axis, about y is 0 M y=yD x(A x(Fsm+ Fs.;,)x Ly/2) +yD x(FDz, x y1) +ys x(Fsz,x y,) +yw x(Fwz1 x Yl) +yD x(FDz2 x Y2) +ys x(Fsz2 x Y2) +yw x(Fwz2 x Y2) =339.9 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis eux=Mux/Fsz-Lx/2=59.534 in Eccentricity of base reaction in y-axis e y=M y/Fsz-Ly/2=0 in Length of bearing in x-axis L'xu= min(Lx,3 x(Lx/2-abs(eux))) =181.398 in Pad base pressures q,,, =0 ksf q2=0ksf q3=2xFuz/(3xLyx(Lx/2-e,,x)) =2.498ksf q4=2xFz/(3xLyx(Lx/2-e,x)) =2.498ksf Minimum ultimate base pressure qumin=min(q,,,,q 2,q.3,qu4) =0 ksf Maximum ultimate base pressure qumax=max(q,,1,q„2,q 3,q 4) =2.498 ksf Calculation Invalid-Foundation uplift occurs under column Analysis and design of concrete footing Combination 15 results: 0.91)+1.6W Forces on foundation Ultimate force in x-axis Fux=yw x Fwx, +yw x Fwx2=19.5 kips Ultimate force in z-axis F,z=yD x A x(Fs q+ Fso;,) +yD x FDz, +yw x Fwz, +yD x FDz2+yw x Fwz2= 74.7 kips Moments on foundation Ultimate moment in x-axis, about x is 0 Mux=yD x(A x(Fsw,+ Fro;,)x Lx/2) +yD x(FDz,x x,+MDx,) +yw x(Fwz,x x,+Mwx,+Fwx,x h) +yD x(FDz2 x x2+MD)2) +yw x(Fwz2 x x2+Mw)2+Fwa x h) =1215.6 kip_ft f TEKLA Project Job Ref. • KJM engineering Section Sheet no./rev. 2882 106th street 19 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Ultimate moment in y-axis, about y is 0 Muy=yD x(A x(F5m+ Fs.ii)x Ly/2)+yD x(FD71 x y1) +yW x(Fv1 x y1)+yD x(FD12 x y2) +yam,x(Fv,,,2 x y2) =224.1 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis eux=Mux/Fu,-Lx/2=75.285 in Eccentricity of base reaction in y-axis euy= Muy/Fu,- Ly/2=0 in Length of bearing in x-axis L'xu=min(Lx,3 x(L),/2-abs(eu),))) =134.145 in Pad base pressures qu1 =0 ksf qu2=0 ksf qua=2x Fu,/(3xLyx(Lx/2-eux)) =2.227ksf quo=2xFuZ/(3xLyx(Lx/2-eux))=2.227ksf Minimum ultimate base pressure qumin=min(qu1,qu2,qu3,qu4) =0 ksf Maximum ultimate base pressure qumax=max(qu1,qu2,qu3,qu4)=2.227 ksf Calculation Invalid-Foundation uplift occurs under column i —30 No.6 bottom bars(8 in c/c) 4 No.6 top bars(77.7 in c/c) 7ET 9 No.6 bottom bars(8.1 in c/c) 9 No.6 top bars(8.1 in ctc) TEKLA Project Job Ref. Chick-Fil-A Cape Cod KJWW engineering section Sheetno./rev. 2882 106th street 1 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date JPG 1/7/2016 FOUNDATION ANALYSIS 8 DESIGN(AC1318) In accordance with ACI318-08 incorporating Errata as of August8, 2014 Tedds calculation version 3.0.00 FOUNDATION ANALYSIS Length of foundation LX= 17 ft Width of foundation Ly=5 ft Foundation area A= LX x Ly=85 ftz Depth of foundation h =36 in Depth of soil over foundation hso;,=12 in Density of concrete Y.nc= 150.0 Ib/ft3 1��NMV �M� Nl 1.61 ksf 0.043 ksf e y ® x @ 1.61 ksf 0.043 ksf Column no.1 details Length of column IX, =18.00 in Width of column ly, = 12.00 in position in x-axis x, =24.00 in position in y-axis y, =30.00 in Column no.2 details Length of column IQ=18.00 in Width of column lye=12.00 in position in x-axis x2= 180.00 in position in y-axis yZ=30.00 in Soil,properties Gross allowable bearing pressure gailow_Gross=3 ksf Density of soil 7so;,= 120.0 Ib/ft3 Angle of internal friction Ob=30.0 deg Design base friction angle 8bb=30.0 deg Coefficient of base friction tan(8bb) =0.577 Passive pressure coefficient(Rankine) Kp=(1 +sin(ob))/(1 -sin(ob)) =3 Self weight FSw<=h x 7.=450 psf TEKLA Project Job Ref. Section Sheet no./rev. KJWW engineering 2882 106th street 2 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Soil weight Fsoji=hsoil x ysoil= 120 psf Column no.1 loads Dead load in z FD7.1 =9.4 kips Snow load in z Fszi = 10.5 kips Wind load in z FW71 = 13.8 kips Wind load in x Fwx,=12.8 kips Column no.2 loads Dead load in z FDz2=2.5 kips Snow load in z Fsz2=2.7 kips Wind load in z Fwa=-13.8 kips Foundation analysis for soil and stability Load combinations per IBC 2009 1.OD(0.299) 1.OD+ 1.OS(0.421) 1.OD+ 1.OW(0.495) 1.OD+0.751-+0.75S+0.75W(0.537) Combination 1 results: 1.OD Forces on foundation Force in z-axis Fdz=yD x A x(Fs A+ Fs,,;,)+yD x FDZ1 +yo x FDz2=60.4 kips Moments on foundation Moment in x-axis, about x is 0 Mdx=YD x(A x(F,m+ Fso;,)x Lx/2) +yD x(FDz1 x x1) +yD x(FDz2 x xz) = 468.1 kip_ft Moment in y-axis, about y is 0 Mdy=yD x(A x(Fsm+ Fs(,;,)x Ly/2)+yD x(FDz, x y,)+yD x(FDz2 x y2) = 150.9 kip_ft Uplift verification Vertical force Fdz=60.35 kips PASS-Foundation is not subject to uplift Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in x-axis edx= Md./Fdz-Lx/2=-8.918 in Eccentricity of base reaction in y-axis edy= Mdy/Fdz- Ly/2=0 in Pad base pressures q, =Fdzx(1 -6x ed./Lx-6xedy/Ly)/(L),x Ly) =0.896ksf q2=Fdzx(1 -6xedx/ Lx+6xedy/Ly)/(Lxx Ly)=0.896ksf q3=Fdzx(1 +6xedx/Lx-6xedy/Ly)/(LxxLy)=0.524ksf q4=Fdz x(1 +6xedx/Lx+6xedy/Ly)/(Lxx Ly) =0.524ksf Minimum base pressure gmin=min(g1,g2,q3,q4) =0.524 ksf Maximum base pressure gmax=max(g1,g2,g3,q4) =0.896 ksf Allowable bearing capacity Allowable bearing capacity gallow=gallow_Gross=3 ksf gmax/gaiiow=0.299 TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 3 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 PASS-Allowable bearing capacity exceeds design base pressure Foundation analysis for soil and stability Combination 4 results: 1.01)+1.OS Forces on foundation Force in z-axis FdZ=yD x A x(Fsw,+ Fsoil) +yo x FD7.1 +ys x Fsz, +yD x FDz2+ys x Fsz2= 73.6 kips Moments on foundation Moment in x-axis, about x is 0 Md.=yD x(A x(Fsw,+ Fsoil)x L./2)+yD x(FDZ1 x x,)+ys x(Fsz, x x,)+yD x(FDz2 x x2)+ys x(Fsz2 x x2) =529.6 kip_ft Moment in y-axis, about y is 0 Mdy=yD x(A x(Fsv,,,+ Froil)x Ly/2) +yD x(FDz, x y,) +ys x(Fsz1 x y,) +yD x(FDz2 x y2) +ys x(Fsz2 x y2) =183.9 kip_ft Uplift verification Vertical force FdZ=73.55 kips PASS-Foundation is not subject to uplift Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in x-axis edX=MdX/Fdz- L./2=-15.589 in Eccentricity of base reaction in y-axis edy=Mdy/Fdz- Ly/2=0 in Pad base pressures q, =Fdzx(1 -6xedX/LX-6xedy/Ly)/(Lxx Ly) =1.262ksf qz=Fdz x(1 -6xedx/Lx+6xedy/Ly)/(Lxx Ly) =1.262ksf q3=Fd7x(1 +6xedX/Lx-6xedy/Ly)/(LXx Ly) =0.469ksf Q4= Fdz x(1 +6xedx/Lx+6xedy/Ly)/(Lxx Ly) =0.469ksf Minimum base pressure qmin=min(q,,Q2,g3,g4) =0.469 ksf Maximum base pressure gmax=max(q,,g2,g3,q4) =1.262 ksf Allowable bearing capacity Allowable bearing capacity gallow=ga1low_cross=3 ksf gm./gauow=0.421 PASS-Allowable bearing capacity exceeds design base pressure Foundation analysis for soil and stability Combination 9 results: 1.01)+1.OW Forces on foundation Force in x-axis FdX=yw x Fwx, = 12.8 kips Force in z-axis Fdz=yD x A x(FsA+ Fsoil) +yD x FDz1 +yw x FwZ1 +yD x FDz2+yw x Fwz2= 60.4 kips Moments on foundation Moment in x-axis, about x is 0 MdX=YD x(A x(Fsm+ Fsoil)x Lx/2) +yD x(FDZ,x x1)+yW x(Fwz,x x,+Fwx, x h) +yD x(FDz2 x x2) +yw x(Fwz2 x x2) =327.1 kip_ft Moment in y-axis, about y is 0 Mdy=yD x(A x(Fsm+ Fso;,)x Ly/2)+yD x(FDz,x y,) +yw x(Fwz,x y,) +yD x(FDz2 x y2) +yw x(Fwz2 x y2)= 150.9 kip_ft I • • T E K L A Project Job Ref. • KJWW engineering Section Sheet no./rev. 2882 106th street 4 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Uplift verification Vertical force FdZ=60.35 kips PASS-Foundation is not subject to uplift Stability against overturning in x direction,moment about x is 0 Overturning moment MOTW=yw x(Fw72 x x2) _-207 kip_ft Resisting moment MRxO=yD x(A x(FS,,,,,+ Fso;,)x Lx/2) +yD x(FD71 x x1) +yw x(FwZ,x x1+Fwx,x h) +yD x(FDZ2 x x2) =534.12 kip_ft Factor of safety abs(MRxo/MDTW) =2.580 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in x direction,moment about x is Lx Overturning moment MOTxL=yw x(Fwx,x h) +yw x(FwZ2 x(x2-Lx))=66 kip_ft Resisting moment MRxL_-1 x(yD x(A x(FS t+ Fso;i)x Lx/2)) +yD x(FDZ1 x(x1 - Lx)) +yw x (FwZ,x(x1- Lx)) +yD x(FDZ2 x(x2-Lx)) _-764.82 kip_ft Factor of safety abs(MRxL/MOT, ) = 11.588 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in y direction,moment about y is 0 Overturning moment MDTyo=yw x(FwZ2 x y2) _-34.5 kip_ft Resisting moment MRyo=-ID x(A x (FS,,,,,+ Fso;,)x Ly/2) +yD x(FDZ;x y1) +yw x(FwZ,x y,)+ yD x(FDZ2 x y2) = 185.37 kip_ft Factor of safety abs(MRyo/Moryo)=5.373 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in y direction, moment about y is Ly Overturning moment MOTyL=yw x(FwZ2 x(y2-Ly)) =34.5 kip_ft Resisting moment MRyL_-1 x(yD x(A x(Fs,t+ Fsoii)x Ly/2)) +yD x(FDZ,x(y,- Ly)) +yw x (FwZi x(yt-Ly)) +yD x(FDZ2 x(y2-Ly))_-185.37 kip_ft Factor of safety abs(MRyL/MOTyt_) =5.373 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against sliding Resistance due to base friction FRFriction=max(FdZ, 0 kN)x tan(Sbb) =34.843 kips Stability against sliding in x direction Resistance from passive soil pressure FRXPass=0.5 x KP x(h2+2 x h x hso;,)x Ly x yso;,= 13.5 kips Total sliding resistance FRx= FRFrictlon+FRxPass=48.343 kips Factor of safety abs(FRx/Fa),) =3.78 PASS-Sliding factor of safety exceeds the minimum of 1.50 Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in x-axis edx= Mdx/FdZ- L./2=-36.954 in Eccentricity of base reaction in y-axis edy= Mdy/FdZ- Ly/2 =0 in Length of bearing in x-axis L'xd=min(Lx,3 x(Lx/2-abs(edx))) = 195.137 in Pad base pressures q, =2xFdZ/(3xLyx(Lx/2+edx)) = 1.484ksf TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 5 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Q2=2xFdz/(3xLyx(Lx/2+edx)) = 1.484ksf q3=0 ksf q4=0 ksf Minimum base pressure qm;n=min(q,,g2,g3,q4) =0 ksf Maximum base pressure gmax=max(g1,g2,q3,q4) =1.484 ksf Allowable bearing capacity Allowable bearing capacity galiow=gauow_cross=3 ksf gmax/gaII.=0.495 PASS-Allowable bearing capacity exceeds design base pressure Foundation analysis for soil and stability Combination 12 results: 1.01)+0.75L+0.75S+0.75W Forces on foundation Force in x-axis Fdx=yw x Fwx1 =9.6 kips Force in z-axis Fdz=yD x A x(Fswr+ Fso;i) +yD x FDZi +ys x Fsz1 +yw x Fwz1 +yD x FDz2+ys x Fs,2+yw x Fw,,2=70.3 kips Moments on foundation Moment in x-axis, about x is 0 Mdx='yD x(A x(Fsm+Fs.;,)x Lx/2) +yD x(FDz1 x x1) +ys x(Fsz1 x x1)+yw x(Fwz,x x,+Fwx,x h) +yD x(FDz2 x x2) +ys x(Fsz2 x x2)+yw x(Fwz2 x x2) =408.5 kip_ft Moment in y-axis, about y is 0 Mdy=yp x(A x(Fs,,,4+ Fs(,;,)x Ly/2)+yD x(FDz1 x y1)+ys x(Fsz,x y1) +yy„ x(Fwz,x yr)+yD x(FDz2 x Y2)+ys x(Fsz2 x Y2) +yw x(Fwz2 x y2) = 175.6 kip_ft Uplift verification Vertical force Fdz=70.25 kips PASS-Foundation is not subject to uplift Stability against overturning in x direction,moment about x is 0 Overturning moment MOTxo=yw x(Fwz2 x x2)_-155.25 kip_ft Resisting moment MRxo=yD x(A x(Fsm+ Fso;,)x Lx/2)+yD x(FDz1 x x1) +ys x(Fsz,x x1) + yw x(Fwz,x x,+Fwx1 x h) +yD x(FDz2 x x2) +ys x(Fsz2 x x2) =563.75 kip_ft Factor of safety abs(MRxo/M0Tx0)=3.631 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in x direction, moment about x is Lx Overturning moment MOTxl=yw x(Fwx1 x h) +yw x(Fw,2 x(x2-Lx))=49.5 kip_ft Resisting moment MRA_-1 x(yD x(A x(Fswt+ Fso;,)x Lx/2)) +yD x(FDz1 x(x1 -Lx))+ys x (Fsz1 x(x, -Lx)) +yw x(Fwz,x(x1- Lx)) +yD x(FDz2 x(x2-Lx))+ys x(Fsz2 x(x2- L.,))_-835.25 kip_ft Factor of safety abs(MR)d-/MOTO =16.874 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in y direction, moment about y is 0 Overturning moment MoTyo=yw x(Fwz2 x y2) _-25.87 kip_ft TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 6 Des Moines,IA 50322 Calc.by rte Chk'd by Date App'd by Date G 6 Resisting moment MRyO=yD x(A x(Fsw,+ Fsoa)x Ly/2) +yD x(FD11 x y1)+ys x(Fs7.1 x y1) + yw x(Fw7.1 x y1) +7D x(FDZ2 x Y2) +ys x(FsZ2 x y2) =201.5 kip_ft Factor of safety abs(MRyo/MOTyo)`7.787 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in y direction, moment about y is Ly Overturning moment MoryL=yw x(FwZ2 x(y2-Ly)) =25.87 kip_ft Resisting moment MRyL=-1 x(yD x(A x(FsA+ Fso;,)x Ly/2)) +yD x(FDZ1 x(y,- Ly)) +ys x (FsZ1 x(Y1- Ly)) +yw x(Fw7.1 x(Y1- Ly))+yD x(FDZ2 x(Y2- Ly)) +ys x(FsZ2 x(y2- Ly)) _-201.5 kip_ft Factor of safety abs(MRyL/MOTyL)=7.787 PASS Overturning moment safety factor exceeds the minimum of 1.50 Stability against sliding Resistance due to base friction FRF6ctlon=max(FdZ, 0 kN)x tan(Sbb) =40.559 kips Stability against sliding in x direction Resistance from passive soil pressure FRxPass=0.5 x KP x(h2+2 x h x hsoil)x Ly x yso;,= 13.5 kips Total sliding resistance FRx=FRFriction+ FRxPass=54.059 kips Factor of safety abs(FRx/Fdx) =5.63 PASS-Sliding factor of safety exceeds the minimum of 1.50 Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in x-axis edx=Mdx/FdZ- Lx/2=-32.221 in Eccentricity of base reaction in y-axis edy=Mdy/FdZ- Ly/2=0 in Pad base pressures q1 = FdZx(1 -6xedx/Lx-6xedy/Ly)/(Lxx Ly) =1.61 ksf q2=FdZx(1 -6xedx/Lx+6xedy/Ly)/(L),x Ly) =1.61 ksf q3= FdZx(1 +6xedx/Lx-6xedy/Ly)/(Lxx Ly) =0.043ksf q4=Fd7.x(1 +6 x edx/Lx+6 x edy/Ly)/(Lx x Ly) =0.043 ksf Minimum base pressure groin=min(g1,g2,q3,q4)=0.043 ksf Maximum base pressure gmax=max(g1,Q2,Q3,g4) =1.61 ksf Allowable bearing capacity Allowable bearing capacity gallow=gailow_cross=3 ksf gmax/gaiiow=0.537 PASS-Allowable bearing capacity exceeds design base pressure FOUNDATION DESIGN(ACI318) In accordance with ACI318-08 incorporating Errata as of August 8, 2014 Material details Compressive strength of concrete f c=4000 psi Yield strength of reinforcement fy=60000 psi Cover to reinforcement Cnom=3 In Concrete type Normal weight Concrete modification factor X= 1.00 TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 7 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Column type Concrete Analysis and design of concrete footing Load combinations per IBC 2009 1.4D(0.033) 1.2D+ 1.01-+ 1.6S(0.071) 1.2D+ 1.6S+0.8W(0.048) 1.2D+ 1.01-+0.5S+ 1.6W(INVALID) 0.9D+ 1.6W(INVALID) Combination 1 results: 1.4D Forces on foundation Ultimate force in z-axis F Z=yD x A x(FSm+ Froij) +yD x FDZ, +yD x FD12=84.5 kips Moments on foundation Ultimate moment in x-axis, about x is 0 M x=yD x(A x(FS,M+ Fs.ij)x L./2)+yD x(FDZ,x x1) +yD x(FDZ2 x x2) _ 655.4 kip_ft Ultimate moment in y-axis, about y is 0 M y=yD x(A x(Fsm+ Froij)x Ly/2) +yD x(FDZ,x y,) +yD x(FD12 x y2)_ 211.2 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis eux= Mix/F z=Lx/2=-8.918 in Eccentricity of base reaction in y-axis e y= M y/F Z- Ly/2=0 in Pad base pressures q,,,=FZx(1 -6xe„x/Lx-6xey/Ly)/(LxxLy) =1.255ksf q2=FZx0 -6xex/Lx+6xey/Ly)/(LxxLy)= 1.255ksf q3=FZx0 +6xex/Lx-6xey/Ly)/(LxxLy) =0.733ksf qi4= FZx(1 +6xex/Lx+6xey/Ly)/(LxxLy) =0.733ksf Minimum ultimate base pressure qumin=min(quj,q 2,q 3,q 4) =0.733 ksf Maximum ultimate base pressure qumax= max(q,,,,q 2,q 3,q 4) = 1.255 ksf Shear diagram,x aps ®Shear(kips) 4.3 3.0 3.8 0 1 3 0 -8.9 TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 8 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Moment diagram,x axis 13Moment(kip_ft) -19 4 a E ceo 0 .v gar 3 0 I Shear diagram,y axis ®Shear(kips) 8.3 0; 0 1 -8.3 Moment diagram,y axis []Moment(kip_ft) 0 0. 164 Moment design,x direction, positive moment Ultimate bending moment M,,.xm.= 1.735 kip_ft Tension reinforcement provided 9 No.6 bottom bars(6.6 in c/c) Area of tension reinforcement provided Asx.bot.p.=3.96 in2 Minimum area of reinforcement(10.5.4) Amin=0.0018 x Ly x h=3.888 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) sm.=min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-$y.bot-$x.bot/2=31.875 In Depth of compression block a=Asxbotpm,x fy/(0.85 x fo x Ly)=1.165 in Neutral axis factor p, =0.85 Depth to neutral axis c=a/(3, = 1.370 in Strain in tensile reinforcement(10.3.5) Et=0.003 x d/c-0.003=0.06679 TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 9 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.bot.prov x fy x(d-a/2) =619.594 kip_ft Flexural strength reduction factor Of=min(max(0.65+(et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity OMn=Of x Mn=557.635 kip_ft Mu.x.max/�Mn=0.003 PASS-Design moment capacity exceeds ultimate moment load Moment design,x direction, negative moment Ultimate bending moment Mu.xmin=-18.991 kip_ft Tension reinforcement provided 9 No.6 top bars(6.6 in c/c) Area of tension reinforcement provided Asx.top.prov=3.96 in2 Minimum area of reinforcement(10.5.4) As.min=0.0018 x Ly x h=3.888 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) sm.=min(3 x h, 18 in) =18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-yx.top/2=32.625 In Depth of compression block a=Asx.top.prov x fy/(0.85 x Po x Ly) =1.165 in Neutral axis factor (3, =0.85 Depth to neutral axis c=a/P, = 1.370 in Strain in tensile reinforcement(10.3.5) et=0.003 x d/c-0.003=0.06843 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.top.prov x fy x(d-a/2) =634.444 kip_ft Flexural strength reduction factor of=min(max(0.65+ (Et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity �Mn=Of x Mn=571 kip_ft abs(Mu.x.min)/OM,=0.033 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,x direction Ultimate shear force Vu.x=3.056 kips Depth to reinforcement d,=min(h-Cnom-Ox.bot/2,h-Cnom-%.top/2) =32.625 In Shear strength reduction factor %=0.75 Nominal shear capacity(Eq. 11-3) Vn=2 x X x�(f..x 1 psi)x Ly x d,=247.606 kips Design shear capacity �Vn=Ov x Vn= 185.705 kips Vu.x/OVn=0.016 PASS-Design shear capacity exceeds ultimate shear load Moment design;y direction, positive moment Ultimate bending moment M,,.y.m.=6.664 kip_ft Tension reinforcement provided 32 No.6 bottom bars(6.3 in c/c) Area of tension reinforcement provided Asy.bot.prov= 14.08 in2 Minimum area of reinforcement(10.5.4) As.min=0.0018 x Lx x h= 13.219 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) sm.= min(3 x h, 18 in)= 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-4.bot/2=32.625 In I ' • • TEKLA Project Job Ref. ?� KJWW engineering Section Sheet no./rev. 2882 106th street 10 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Depth of compression block a=Asy.bot.prov x fy/(0.85 x f,x Lx)=1.218 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/R, = 1.433 in Strain in tensile reinforcement(10.3.5) Et=0.003 x d/c-0.003=0.06530 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asy.bot.p.v x fy x(d-a/2) =2253.927 kip_ft Flexural strength reduction factor Of=min(max(0.65+(St-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity OMn_Of x Mn=2028.534 kip_ft Mu.y,max/$Mn=0.003 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,y direction One-way shear design does not apply. Shear failure plane fall outside extents of foundation. Two-way shear design at column 1 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Two-way shear design at column 2 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Analysis and design of concrete footing Combination 6 results: 1.2D+1.OL+1.6S Forces on foundation Ultimate force in z-axis FDZ=yD x A x(FsWt+ Fso;i) +yD x FDZ, +ys x FsZ, +yD x FDZ2+ys x FsZ2= 93.5 kips Moments on foundation Ultimate moment in x-axis, about x is 0 Mux=yD x(A x(Fsm+ Fso;,)x L./2) +yD x(FDZ,x x,)+'ys x(FsZ,x x,) +yD x(FDZ2 x x2) +ys x.(Fs,2 x x2) =660.1 kip_ft Ultimate moment in y-axis, about y is 0 M y=YD x(A x(Fr,,,A+Fsoij)x L,/2) +yD x(FDZ,x y,) +ys x(FsZ,x y,) +yD x(FDZ2 x y2) +ys x(FsZ2 x y2) =233.8 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis eux=M,x/F Z-Lx/2 17.311 in Eccentricity of base reaction in y-axis e y=M y/F Z-Ly/2=0 in Pad base pressures q,,, =FZx(1 -6xeux/Lx-6xey/Ly)/(L.,xLy) =1.661 ksf qi2=FZx(1 -6xe,/L),+6xe,/Ly)/(LxxLy) =1.661 ksf q3=FZx(1 +6xex/L)c-6xey/Ly)/(LxxLy) =0.54ksf q4=FZx(1 +6xeux/Lx+6xey/Ly)/(LxxLy) =0.54ksf Minimum ultimate base pressure qumin=min(gU,,q.2,qu3,q.4) =0.54 ksf Maximum ultimate base pressure qumax=max(qu,,qu2,qu3,gA) = 1.661 ksf TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 11 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Shear diagram,x axis ®Shear(kips) 9.1 6.4 8.1 0 1 3 0 Moment diagram,x axis 13Moment(kip_ft) -40.4 s _ ; r 0 ' #y � Shear diagram,y axis ®Shear(kips) 17.7 0 0 1 -17.7 BMoment(kip_ft) Moment diagram,y axis 0 0 a, a 22.1 Moment design,x direction, positive moment Ultimate bending moment M,,.xm.=3.71 kip_ft Tension reinforcement provided 9 No.6 bottom bars(6.6 in c/c) TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 12 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Area of tension reinforcement provided Asx.bot.prov=3.96 inz Minimum area of reinforcement(10.5.4) As.min=0.001.8 x Ly x h=3.888 inz PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) smax=min(3 x h, 18 in) = 18 in . PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cr m-yx.bot/2=32.625 in Depth of compression block a=Asxbot.prov x fy/(0.85 x fo x Ly)=1.165 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/R, = 1.370 in Strain in tensile reinforcement(10.3.5) et=0.003 x d/c-0.003 0.06843 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.bot.prov x fy x(d-a/2) =634.444 kip_ft Flexural strength reduction factor =min(max(0.65+ (et-0.002)x(250/3), 0.65), 0.9) =0.900 Design`moment capacity OMn=Of x Mn=571 kip_ft Mux.m./OMn=0.006 PASS Design moment capacity exceeds ultimate moment load Moment design,x direction, negative moment Ultimate bending moment Mu.x.min= 40.365 kip_ft Tension reinforcement provided 9 No.6 top bars(6.6 in c/c) Area of tension reinforcement provided Asx.top.prov=3.96 inz Minimum area of reinforcement(10.5.4) As.min=0.0018 x Ly x h=3.888 inz PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) sm.=min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-cnom-%.top/2=32.625 in Depth of compression block a=Asx.top.prov x fy/(0.85 x fo x Ly)= 1.165 in Neutral axis factor p, =0.85 Depth to neutral axis c=a/P, = 1.370 in Strain in tensile reinforcement(10.3.5) et=0.003 x d/c-0.003=0.06843 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.top.prov x fy x(d-a/2) =634.444 kip_ft Flexural strength reduction factor 0=min(max(0.65+ (Ft-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity OMn=0,x Mn=571 kip_ft abs(Mu.xmin)/0Mn=0.071 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,x direction Ultimate shear force Vu.x=6.493 kips Depth to reinforcement dv=min(h-Cnom-(,.bot/2,h-cnom-k.top/2) =32.625 In Shear strength reduction factor $v=0.75 Nominal shear capacity(Eq. 11-3) Vn=2 x k x 4(fo x 1 psi)x Ly x dv=247.606 kips Design shear capacity �Vn=0,x Vn= 185.705 kips Vu.x/OVn=0.035 TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 13 Des Moines,IA 50322 CaIc.by Date Chk'd by Date App'd by Date G 1/7/2016 PASS-Design shear capacity exceeds ultimate shear load Moment design,y direction, positive moment Ultimate bending moment M�.,n.= 14.16 kip_ft Tension reinforcement provided 32 No.6 bottom bars(6.3 in c/c) Area of tension reinforcement provided Asy.bot.prov= 14.08 inz Minimum area of reinforcement(10.5.4) As.min=0.0018 x Lx x h= 13.219 inz PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) sm.=min(3 x h, 18 in)= 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-Oy.bot/2=32.625 in Depth of compression block a=Asy.botprov x fy/(0.85 x fc x Lx) = 1.218 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/p, = 1.433 in Strain in tensile reinforcement(10.3.5) Et=0.003 x d/c-0.003=0.06530 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asy.bot.prov x fy x(d-a/2) =2253.927 kip_ft Flexural strength reduction factor 0=min(max(0.65+(Et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity �Mn=0 x Mn=2028.534 kip_ft Mu,mu/0Mn=0.007 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,y direction One-way shear design does not apply. Shear failure plane fall outside extents of foundation. Two-way shear design at column 1 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Two-way shear design at column 2 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Analysis and design of concrete footing Combination 9 results: 1.21)+1.6S+0.8W Forces on foundation Ultimate force in x-axis F x=yw x Fwx, = 10.2 kips Ultimate force in z-axis Fuz=yD x A x(Fr A+ Fsoa) +yD x FDZ, +ys x Fs,, +yw x FwZ, +yD x FD72+ys x FsZ2+yw x Fwz2=93.5 kips Moments on foundation Ultimate moment in x-axis, about x is 0 M„x=yD x(A x(Fry t+ Fsoil)x Lx/2)+yo x(FDZ,x x,) +ys x(Fsz,x x,) +yw x(FwZ,x x,+Fwx,x h) + yD x(FDZ2 x x2) +ys x(Fszs x x2) +yw x(Fwz2 x x2) =547.3 kip_ft Ultimate moment in y-axis, about y is 0 M y=yD x(A x(Fs,,,t+ Fso;i)x Ly/2) +yD x(FDz, x y,) +ys x(Fsz,x y,) +y W x(FwZ, x Y,) +yD x(FDz2 x Y2) +ys x(Fsz2 x Y2) +yw x(Fwz2 x Y2) =233.8 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis eux=Mix/Fuz-Lx/2=-31.782 in TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2662 106th street 14 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Eccentricity of base reaction in y-axis e y=M y/F Z- Ly/2=0 in Pad base pressures q,,, =FZx(1 -6xex/Lx-6xey/Ly)/(LxxLy) =2.129ksf q2=FZx(1 -6xex/Lx+6xey/Ly)/(LxxLy) =2.129ksf q„3=F„Zx(1 +6xex/Lx-6xey/Ly)/(LxxLy) =0.072ksf q4=FZx(1 +6xex/Lx+6xey/Ly)/(LxxLy) =0.072ksf Minimum ultimate base pressure qumin=min(quI,qu2,qu3,q A) =0.072 ksf Maximum ultimate base pressure qumax= max(qu1,qu2,qu3,qu4) =2.129 ksf Shear diagram,x abs Shear(kips) 13.2 j.0 0 1 3 0 25.9 Moment diagram,x axis ®Moment(kip_ft) -24.5 0 ®Shear(kips) Shear diagram,y axis 17.7 0 0 1 -17.7 TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 15 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Moment diagram,y axis 13Moment(kip_ft) 0 0 Jam RI t fffltit �._ a,. 22.1 Moment design,x direction, positive moment Ultimate bending moment Max max=26!605 kip_ft Tension reinforcement provided 9 No.6 bottom bars(6.6 in c/c) Area of tension reinforcement provided Au.bot.prov=3.96 in2 Minimum area of reinforcement(10.5.4) As.mm=0.0018 x Ly x h=3.888 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) sm.= min(3 x h, 18 in) =18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-%.bot/2=32.625 in Depth of compression block a=As..bot.prov x fy/(0.85 x f o x Ly) =1.165 in Neutral axis factor P, =0.85 Depth to neutral axis c=a/(3, = 1.370 in Strain in tensile reinforcement(10.3.5) Et=0.003 x d/c-0.003=0.06843 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.bot.prov x fy x(d-a/2)=634.444 kip_ft Flexural strength reduction factor 0= min(max(0.65+ (et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity OM,=Of x Mn=571 kip_ft Mu.x.max/OMn=0.047 PASS-Design moment capacity exceeds ultimate moment load Moment design,x direction, negative moment Ultimate bending moment Mu.X.min=-24.51 kip_ft Tension reinforcement provided 9 No.6 top bars(6.6 in c/c) Area of tension reinforcement provided Asx.top.prov=3.96 in2 Minimum area of reinforcement(10.5.4) k.min=0.0018 x Ly x h=3.888 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) smax=min(3 x h, 18 in)= 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-cnom-%.top/2=32.625 In Depth of compression block a=Asx.top.p.x fy/(0.85 x fc x Ly)= 1.165 in Neutral axis factor (3, =0.85 Depth to neutral axis c=a/R, =1.370 in Strain in tensile reinforcement(10.3.5) Et=0.003 x d/c-0.003=0.06843 TEKLA Project .lob Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 16 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.top.prov x fy x(d-a/2) =634.444 kip_ft Flexural strength reduction factor of=min(max(0.65+(Et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity Wn=0 x Mn=571 kip_ft abs(M,,.x.min)/Wn=0.043 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,x direction Ultimate shear force V�.x=8.899 kips Depth to reinforcement d,,=min(h-cnom-$xbot/2,h-Cnom-yxtop/2) =32.625 in Shear strength reduction factor (�,;=0.75 Nominal shear capacity(Eq. 11-3) Vn=2 x X x�(fo x 1 psi)x Ly x dv=247.606 kips Design shear capacity OVn=0,x Vn= 185.705 kips Vu.x/OVn=0.048 PASS-Design shear capacity exceeds ultimate shear load Moment design,y direction, positive moment Ultimate bending moment ML,.y,max=14.16 kip_ft Tension reinforcement provided 32 No.6 bottom bars(6.3 in c/c) Area of tension reinforcement provided Asy.bot_pro = 14.08 in2 Minimum area of reinforcement(10.5.4) As.min=0.0018 x Lx x h= 13.219 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) smax=min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-Ox.bot-Oy.bot/2=31.875 In Depth of compression block a=Asy.bot.prov x fy/(0.85 x fo x Lx) =1.218 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/R, = 1.433 in Strain in tensile reinforcement(10.3.5) et=0.003 x d/c-0.003=0.06373 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asy.bot.p.x fy x(d-a/2) =2201.127 kip_ft Flexural strength reduction factor 0=min(max(0.65+ (st-0.002)x(250/3), 0.65), 0.9)=0.900 Design moment capacity OMn=0 x Mn= 1981.014 kip_ft Mu.y.max/OMn=0.007 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,y direction One-way shear design does not apply. Shear failure plane fall outside extents of foundation. Two-way shear design at column 1 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Two-way shear design at column 2 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. r TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 17 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Analysis and design of concrete footing Combination 12 results: 1.21)+ 1.01-+0.5S+1.6W Forces on foundation Ultimate force in x-axis Fax=yw x Fwx, =20.5 kips Ultimate force in.z-axis FDZ=yD x A x(Fsw+ Fsojl) +yD x FDz1 +ys x Fsz, +yw x FwZ, +yD x FDz2+ys x Fsz2+yw x Fwz2=79.0 kips Moments on foundation Ultimate moment in x-axis, about x is 0 Mix=yD x(A x(Fsvt+Fs.;,)x Lx/2)+yo x(FDz1 x X1) +ys x(FsZ, x x1) +yw x(FwZi x x1+Fwx1 x h) +yD x(FDz2 x X2) +ys x(Fsz2 x x2) + yw x(Fwz2 x x2) =366.9 kip_ft Ultimate moment in y-axis, about y is 0 M Y=yD x(A x(Fsm+ Fs.;,)x Ly/2)+yD x(FDZ, x Y1)+ys x(FsZ,x y,) +yw x(FwZ1 x Yi)+yD x(FDZ2 x Y2) +ys x(Fsz2 x Y2)+yw x(FwZ2 x y2) = 197.5 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis eux=M.x/F.z-Lx/2=-46.282 in Eccentricity of base reaction in y-axis euy=M 1,/F,,z- Ly/2=0 in Length of bearing in x-axis L'x =min(Lx,3 x(Lx/2-abs(e.))) =167.153 in Pad base pressures qu, =2xFuz/(3xL,x(L./2+eux))'=2.269ksf qi2=2xF„Z/(3xLyx(Lx/2+ex))=2.269ksf q 3=0 kN/m2=0 ksf qU4=0 kN/m2=0 ksf Minimum ultimate base pressure qumin=min(qu1,q.2,qu3,gU4) =0 ksf Maximum ultimate base pressure qumax=max(q 1,q 2,q 3,qu4) =2.269 ksf Calculation Invalid-Foundation uplift occurs under column Analysis and design of concrete footing Combination 15 results: 0.91)+1.6W Forces on foundation Ultimate force in x-axis F x=yw x Fwx, =20.5 kips Ultimate force in z-axis F,,z=yD x A x(Fswt+FsOil) +yD x FDZ, +yw x Fwz1 +yD x FDz2+yw x Fwz2= 54.3 kips Moments on foundation Ultimate moment in x-axis, about x is 0 M x=yD x(A x(Fsm+ Fs.;,)x Lx/2) +yD x(FDz,x X1) +yw x(Fwz1 x x,+Fw�, x h) +yD x(FDz2 x x2) +yw x(Fwz2 x X2) =195.7 kip_ft Ultimate moment in y-axis, about y is 0 M Y=yD x(A x(Fsm+ Fso;,)x Ly/2) +yD x(FDz, x y1) +yw x(Fwz1 x y,) +yD x(FDZ2 x y2)+yw x(Fwz2 x y2) = 135.8 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis eux=M x/Fez-Lx/2=-58.761 in Eccentricity of base reaction in y-axis euy=M Y/Fez- Ly/2=0 in Length of bearing in x-axis L',.0= min(Lx,3 x(Lx/2-abs(eux))) =129.718 in TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 18 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/7/2016 Pad base pressures q 1 =2xF„Z/(3xLyx(L./2+ex))=2.01 ksf q2=2xFZ/(3xLyx(L.,/2+ex)) =2.01 ksf q 3=0kN/m2=0ksf qU4=0 kN/m2=0 ksf Minimum ultimate base pressure qumin=min(qu1,qu2,qu3,qu4) =0 ksf Maximum ultimate base pressure qumax= max(qu1,qu2,qu3,qu4)=2.01 ksf Calculation Invalid-Foundation uplift occurs under column 32 No.6 bottom bars(6.3 in c/c) I 4 No.6 top bars(65.7 in c/c) 9 No.6 bottom bars(6.6 in c%) 9 No.6 top bars(6.6 in c/c) ��• TEKLA Project Job Ref. • Chick-Fil-A Cape Cod KJWW engineering Section Sheet no./rev. 2882 106th street 1 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date JPG 1/17/2016 FOUNDATION ANALYSIS&DESIGN(AC1318) In accordance with ACI318-08 incorporating Errata as of August 8, 2014 Tedds calculation version 3.0.00 FOUNDATION ANALYSIS Length of foundation Lx=15 ft Width of foundation Ly=5 ft Foundation area A= L.x Ly=75 ft2 Depth of foundation h=36 in Depth of soil over foundation hso;, =12 in Density of concrete yc c= 150.0 Ib/ft3 1.534 ksf _. Y x III 1.534 ksf Column no.1 details Length of column Ix, =18.00 in Width of column ly, =12.00 in position in x-axis x, =37.50 in position in y-axis y, =30.00 in Column no.2 details Length of column I,Q=18.00 in Width of column Iy2=12.00 in position in x-axis x2=142.50 in position in y-axis Y2=30.00 in Soil properties Gross allowable bearing pressure glallow_Gross=3 ksf Density of soil yso;,= 120.0 Ib/ft3 Angle of internal friction $b=30.0 deg Design base friction angle 8bb=30.0 deg TEKLA Project Job Ref. Section Sheet no./rev. KJWW engineering 2882 106th street 2 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 Coefficient of base friction tan(8bb) =0.577 Passive pressure coefficient(Rankine) Kp=(1 +sin(gb))/(1 -sin(ob)) =3 Self weight Fsm=h x Y.ne.=450 psf Soil weight Fso;,=hsa;,x yso;,= 120 psf Column no.1 loads Dead load in z FD7.1 =2.7 kips Snow load in z Fsz1 =5.7 kips Wind load in z Fwz, =-15A kips Wind load in x Fwx1 =9.5 kips Column no.2 loads Dead load in z FDz2=2.5 kips Snow load in z F$z2=2.7 kips Wind load in z Fwz2=15.1 kips Foundation analysis for soil and stability Load combinations per IBC 2009 1.OD(0.215) 1.OD+ 1.OS(0.275) 1.OD+ 1.OW(0.511) 1.OD+0.751-+0.75S+0.75W(0.436) Combination 1 results: 1.OD Forces on foundation Force in z-axis Fdz=yD x A x(F,m+ Fso;i) +yD x FDz1 +7D x FDzz=48.0 kips Moments on foundation Moment in x-axis, about x is 0 Mdx=yD x(A x(Fs,t+ Fso;,)x Lx/2) +yD x(FDz1 x x1)+yD x(FD,2 x x2) = 358.7 kip_ft Moment in y-axis, about y is 0 Mdy=yD x(A x(Fr,,,A+ Fso;i)x Ly/2) +yD x(FDz, x y1) +yD x(FDzz x y2)= 119.9 kip_ft Uplift verification Vertical force Fdz=47.95 kips PASS-Foundation is not subject to uplift Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in x-axis ed.=Mdx/Fez-L./2=-0.219 in Eccentricity of base reaction in y-axis edy= Mdy/FdZ- Ly/2=0 in Pad base pressures q, =Fdzx(1 -6xed),/L.,-6xedy/Ly)/(LxxLy) =0.644ksf q2=Fdzx(1 -6x ed./Lx+6xedy/Ly)/(LxxLy) =0.644ksf q3=Fdzx0 +6xedx/Lx-6xedy/Ly)/(LxxLy) =0.635ksf q4= Fdzx(1 +6xedx/Lx+6xedy/Ly)/(LxxLy) =0.635ksf Minimum base pressure groin=min(g1,g2,q3,Q4)=0.635 ksf Maximum base pressure gmax=max(g1,02,g3,q4) =0.644 ksf • TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2862 106th street 3 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 Allowable bearing capacity Allowable bearing capacity gauow=gailow_Gross=3 ksf qma./gallow=0.215 PASS-Allowable bearing capacity exceeds design base pressure Foundation analysis for soil and stability Combination 4 results: 1.01)+ 1.OS Forces on foundation Force in z-axis FdZ=yD x A x(Fs,A+ Fs,,;,)+yD x FDZ, +ys x Fs., +yD x FDz2+ys x FsZ2= 56.4 kips Moments on foundation Moment in x-axis, about x is 0 Md.=yD x(A x(Fswt+ Fsoil)x Lx/2) +yD x(FDzl x x,)+ys x(FsZ, x x,) +yD x(FDZ2 x x2) +ys x(Fsz2 x x2) =408.6 kip_ft Moment in y-axis, about y is 0 Mdy=YD x(A x(Fs t+ Fsoil)x Ly/2) +yD x(FDZ, x y,) +ys x(FsZ,x Y,) +YD x(FoZ2 x Y2) +Ys x(Fsz2 x Y2) = 140.9 kip_ft Uplift verification Vertical force FdZ=56.35 kips PASS-Foundation is not subject to uplift Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in x-axis edx=Md./FdZ-Lx/2=-2.981 in Eccentricity of base reaction in y-axis edy=Mdy/FdZ-Ly/2=0 in Pad base pressures q, = FdZx(1 -6x ed./L.-6xedy/Ly)/(Lxx Ly)=0.826ksf q2=Fd7.x(1 -6x ed./L.+6xedy/Ly)/(Lxx Ly) =0.826ksf q3=FdZx(1 +6xedx/L)(-6xedy/Ly)/(L.x Ly) =0.677ksf q4=Fd7x(1 +6xedx/Lx+6xedy/Ly)/(Lxx Ly)=0.677ksf Minimum base pressure groin=min(q,,g2,g3,q4) =0.677 ksf Maximum base pressure gmax=max(q,,g2,g3,g4)=0.826 ksf Allowable bearing capacity Allowable bearing capacity gallow=gauow_cross=3 ksf qma./gauow=0.275 PASS-Allowable bearing capacity exceeds design base pressure Foundation analysis for soil and stability Combination 9 results: 1.01)+ 1.OW Forces on foundation Force in x-axis Fdx=yw x Fwx, =9.5 kips Force in z-axis FdZ=yD x A x(Fs,M+Fsoe)+yD x FDZ, +yw x FwZ, +yD x FDZ2+yw x Fw:2= 48.6 kips TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 4 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 Moments on foundation Moment in x-axis, about x is 0 Md.=yD x(A x(F,,m+Fs.;,)x Lx/2) +yD x(FDZ,x x1) +yw x(FwZ1 x x,+Fwx, xh) +yDx(FDZ2xx2)+ywx(FwZ2xx2) =519.4kip_ft Moment in y-axis, about y is 0 Mdy=yD x(A x(FsA+ Fsoa)x Ly/2) +yD x(FDZ, x y,) +yw x(FwZ,x y,) +yD x(FDZ2 x y2) +yw x(FwZ2 x y2)= 119.9 kip_ft Uplift verification Vertical force FdZ=47.95 kips PASS-Foundation is not subject to uplift Stability against overturning in x direction, moment about x is 0 Overturning moment MoTyo=yw x(FwZ1 x x,) _-47.19 kip_ft Resisting moment MR4=yD x(A x(FS,M+ Fs.;,)x Lx/2)+yD x(FDZ,x x1) +yw x(Fwx1 x h) +yD x(FDZ2 x x2)+yw x(FwZ2 x x2) =566.56 kip_ft Factor of safety abs(MRxo/MOTxO) = 12.007 PASS-Overturning moment safety factor exceeds the minimum of 1.50- Stability against overturning in x direction,moment about x is Lx Overturning moment MoTxL= Yw x(FwZ,x(x1-Lx)+Fwx,x h) =207.81 kip_ft Resisting moment MRxL_-1 x(yD x(A x(Fsm+ Fs,,;,)x Lx/2)) +yD x(FDZ1 x(x1-Lx)) +yD x (FDZ2 x(x2- Lx))+yw x(FwZ2 x(x2- Lx)) _-407.69 kip_ft Factor of safety abs(MRxL/Morn) =1.962 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in y direction,moment about y is 0 Overturning moment MoTyo=yw x(FwZ1 x y,) _-37.75 kip_ft Resisting moment MRyo=yD x(A x(Fsw,+ Fso;i)x Ly/2) +yD x(FDZ1 x y1) +yD x(FDZ2 x y2) + yw x(FwZ2 x y2) = 157.62 kip_ft Factor of safety abs(MRyo/MoTyo) =4.175 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in y direction, moment about y is Ly Overturning moment MoTyo=yw x(FwZ,x(y,-Ly)) =37.75 kip_ft Resisting moment MRyL_-1 x(yD x(A x(Fsv t+ Fsoil)x Ly/2)) +yD x(FDZ1 x(y,- Ly)) +yD x (FDZ2 x(y2- Ly)) +yw x(FwZ2 x(y2-Ly)) _-157.62 kip_ft Factor of safety abs(MRyL/MoTyo) =4.175 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against sliding Resistance due to base friction FRFrict;on=max(FdZ, 0 kN)x tan(Sbb) =27.684 kips Stability against sliding in x direction Resistance from passive soil pressure FRxPass=0.5 x Kp x(h2+2 x h x hso„)x Ly x yso;,= 13.5 kips Total sliding resistance FRx= FRFriction+ FRxpass=41.184 kips Factor of safety abs(FRx/Fd)) =4.34 PASS-Sliding factor of safety exceeds the minimum of 1.50 T E K L A Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 5 Des Moines,IA 50322 Cale.by Date Chk'd by Date App'd by Date G 1/17/2016 Bearing resistance _ Eccentricity of base reaction Eccentricity of base reaction in x-axis edx= Max/Fdz-Lx/2=39.979 in Eccentricity of base reaction in y-axis ed,=MdY/Fdz-LY/2=0 in Length of bearing in x-axis L'xd=min(Lx,3 x(Lx/2-abs(edx))) = 150.063 in Pad base pressures q, =0 ksf q2=0 ksf q3=2xFdz/(3xLyx(L./2-ed),)) =1.534ksf q4=2xFdZ/(3xLyx(Lx/2-edx)) =1.534ksf Minimum base pressure gmin=min(q,,g2,g3,q4) =0 ksf Maximum base pressure gmax=max(q,,g2,g3,q4) =1.534 ksf Allowable:bearing capacity Allowable bearing capacity gauow=gauow-cross=3 ksf gmax/gauow=0.511 PASS-Allowable bearing capacity exceeds design base pressure Foundation analysis for soil and stability Combination 12 results: 1.01)+0.75L+0.75S+0.75W Forces on foundation Force in x-axis Fdx=yw x Fwx, =7.1 kips Force in z-axis FdZ=yo x A x(Fs,M+ Fsoil) +yD x FDz1 +ys x Fs., +yw x Fwz, +yD x FDz2+ys x Fsz2+yw x Fw,2=54.3 kips Moments on foundation Moment in x-axis, about x is 0 Md.=yD x(A x(F,,m+Fsoil)x Lx/2) +yD x(FDz, x x,) +ys x(FsZ,x x,) +7w x(Fwz,x x,+Fwx,x h) +yD x(FDz2 x x2) +ys x(Fsz2 x x2) +-1w x(Fwz2 x x2) =516.6 kip_ft Moment in y-axis, about y is 0 MdY=YD x(A x(F,m+ Fsofl)x LY/2) +yD x(FD71 x Y1)+ys x(Fsz,x Y,) +yw x (FwZ, xY,) +-yD x(FDz2xY2)+ysx(Fsz2xY2) +ywx(Fwz2xy2) = 135.6 kip_ft Uplift verification Vertical force Fdz=54.25 kips PASS-Foundation is not subject to uplift Stability against overturning in x direction, moment about x is 0 Overturning moment MoTxo=yw x(F w,x x,)_-35.39 kip_ft Resisting moment MRxo=yD x(A x(Fsm+ Fsoll)x Lx/2) +yD x(FDz,x x,) +ys x(FsZ,x x,) + yw x(Fwx,x h) +yD x(FDZ2 x x2) +ys x(Fsz2 x x2) +yw x(Fwz2 x x2) _ 552.02 kip_ft Factor of safety abs(MRx0/MOr),o) = 15.598 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in x direction, moment about x is Lx Overturning moment MOTxL=yw x(FwZ,x(x,-Lx)+Fwx, x h) = 155.86 kip_ft T E K L A Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 6 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 Resisting moment MRxL=-1 x(yD x(A x(Fswt+ Fsoi,)x Lx/2)) +yD x(FDZ,x(x,-Lx)) +ys x (FsZ,x(x,-LX)) +yD x(FDZ2 x(X2-LX)) +ys X(Fsz2 x(x2- LX)) +yw X(FwZ2 x(x2- L),))_-452.98 kip_ft Factor of safety abs(MRxL/MDT),L) =2.906 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in y direction,moment about y is 0 Overturning moment MDTYo=yw x(Fwzl x y,)_-28.31 kip_ft Resisting moment MRyo=YD x(A x(Fswt+ FSoa)x Li/2) +yD x(FDZ, x Y,) +ys x(FsZ,x Y,) + yD x(FDZ2 x Y2) +ys x(FsZ2 x Y2) +yw x(FwZ2 x y2) =163.94 kip_ft Factor of safety abs(MRyo/Moryo)=5.790 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against overturning in y direction, moment about y is Ly Overturning moment MOTYL=yw x(FwZ, x(y,- Ly)) =28.31 kip_ft Resisting moment MRyL=-1 x(yD x(A x(Fs,,,n+ Fsoii)x Ly/2)) +yD x(FDZ, x(y,-Ly)) +ys x (Fs.,x(Y, - Ly)) +yD x(FDZ2 x(Y2-Ly)) +ys x(Fs7.2 x(Y2-Ly)) +yw x(Fwrz x(y2-Ly)) _-163.94 kip_ft Factor of safety abs(MRyL/MoTyL)=5.790 PASS-Overturning moment safety factor exceeds the minimum of 1.50 Stability against sliding Resistance due to base friction FRFoction=max(FdZ, 0 kN)x tan(8bb) =31.321 kips Stability against sliding in x direction Resistance from passive soil pressure FR,, a,s=0.5 x Kp x(h2+2 x h x hsoi,)x Ly x ys gl=13.5 kips Total sliding resistance FRx=FRFriction+ FRxPass=44.821 kips Factor of safety abs(FRx/Fax) =6.29 PASS-Sliding factor of safety exceeds the minimum of 1.50 Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in x-axis edx= Mdx/Fdz- Lx/2=24.276 in Eccentricity of base reaction in y-axis edy= Mdy/FdZ- Ly/2=0 in Pad base pressures q, =FdZx(1 -6x edx/Lx-6x edy/Ly)/(Lxx Ly) =0.138ksf q2=Fat x(1 -6 x edx/Lx+6 x edy/Ly)/(Lx x Ly) =0.138 ksf q3=Fd,X(1 +6x edx/Lx-6x edy/Ly)/(Lx x Ly)= 1.309ksf q4=FdZ x(1 +6 x edx/Lx+6 x edy/Ly)/(Lx x Ly) = 1.309 ksf Minimum base pressure groin=min(q,,g2,g3,q4) =0.138 ksf Maximum base pressure gmax= max(q,,g2,g3,q4) =1.309 ksf Allowable bearing capacity Allowable bearing capacity gaiiow=gaiiow_Gross=3 ksf gmax/gaii0w=0.436 PASS-Allowable bearing capacity exceeds design base pressure • • • TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 7 Des Moines,IA 50322 Cale.by Date Chk'd by Date App'd by Date G 1/17/2016 FOUNDATION DESIGN(AC1318) In accordance with ACI318-08 incorporating Errata as of August 8, 2014 Material details Compressive strength of concrete f c=4000 psi Yield strength of reinforcement fY=60000 psi Cover to reinforcement Cnom=3 in Concrete type Normal weight Concrete modification factor X=1.00 Column type Concrete Analysis and design of concrete footing Load combinations per IBC 2009 1.4D(0.004) 1.2D+1.01-+ 1.6S(0.011) 1.2D+ 1.6S+0.8W(0.026) 1.2D+ 1.01-+0.5S+ 1.6W(INVALID) 0.9D+ 1.6W(INVALID) Combination 1 results: 1.4D Forces on foundation Ultimate force in z-axis F,,Z=yD x A x(FS,,,A+ Froi,) -yD x FDz1 +yD x FD72=67.1 kips Moments on foundation Ultimate moment in x-axis, about x is 0 Mux=yD x(A x(FSm+ Froii)x Lx/2) +yD x(FDZ,x x1) +yD x(FDZ2 x x2) _ 502.2 kip_ft Ultimate moment in y-axis, about y is 0 M y=yD x(A x(Fsm+ Fsoii)x Ly/2) +yD x(FDz1 x y1) +yD x(FDz2 x y2) _ 167.8 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis eux=M,x/Fez-Lx/2=-0.219 in Eccentricity of base reaction in y-axis e y=M y/F z- Ly/2=0 in Pad base pressures q1 =F„zx(1 -6xex/ Lx-6xey/Ly)/(Lx x Ly) =0.902ksf q2=Fuzx(1 -6xe),/Lx+6xey/Ly)/(Lx x Ly) =0.902ksf qU3=F„zx(1 +6xex/Lx-6xey/Ly)/(Lx x Ly)=0.889ksf q4=Fzx(1 +6xex/Lx+6xey/Ly)/(Lx x Ly) =0.889ksf Minimum ultimate base pressure qumin=min(qu1,qu2,qu3,qu4) =0.889 ksf Maximum ultimate base pressure qumax= max(qu1,qu2,qu3,gU4)=0.902 ksf TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 8 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 Shear diagram,x axis ®Shear(kips) 2.1 1.6 0 0 1 14 Moment diagram,x axis [3Moment(kip_ft) -2.3 0 �<. . 2 Shear diagram,y axis ®Shear(kips) 3.6 0 III 0 1 -3.6 Moment diagram,y axis ®Moment(kip_ft) 0 0 ffl r ,z 4.5 Moment design,x direction, positive moment Ultimate bending moment ML,.x.m.= 1.452 kip_ft Tension reinforcement provided 9 No.6 bottom bars(6.6 in c/c) TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 9 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 Area of tension reinforcement provided Asx bot.prov=3.96 in2 Minimum area of reinforcement(10.5.4) As.min=0.0018 x Ly x h=3.888 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) sm.=min(3 x In, 18 in)=18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-yy.bot-yxbot/2=31.875 In Depth of compression block a=Asx.bot.prov x fy/(0.85 x fo x Ly) =1.165 in Neutral axis factor (3, =0.85 Depth to neutral axis c=a/(3, = 1.370 in Strain in tensile reinforcement(10.3.5) Et=0.003 x d/c-0.003=0.06679 PASS-Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.bot.p.x fy x(d-a/2)=619.594 kip_ft Flexural strength reduction factor Of=min(max(0.65+(Et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity 0M,=0 x Mn=557.635 kip_ft Mu.x.max/OMn=0.003 PASS-Design moment capacity exceeds ultimate moment load Moment design,x direction, negative moment Ultimate bending moment Mu.x.min=-2.275 kip_ft Tension reinforcement provided 9 No.6 top bars(6.6 in c/c) Area of tension reinforcement provided Asx.top.prov=3.96 in2 Minimum area of reinforcement(10.5.4) As.min=0.0018 x Ly x h=3.888 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) sm.= min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-cnom-05,.top/2=32.625 in Depth of compression block a=Asx.top.prov x fy/(0.85 x fo x Ly) =1.165 in Neutral axis factor (3, =0.85 Depth to neutral axis c=a/R, = 1.370 in Strain in tensile reinforcement(10.3.5) Et=0.003 x d/c-0.003=0.06843 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.top.prov x fy x(d-a/2) =634.444 kip_ft Flexural strength reduction factor 0=min(max(0.65+ (£t-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity OMn=0 x Mn=571 kip_ft abs(Mu.x.min)/�Mn=0.004 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,x direction Ultimate shear force Vu,x=0.49 kips Depth to reinforcement dv=min(h-cnom-O.bot/2,h-Cnom-Ox.top/2) =32.625 in Shear strength reduction factor 0 =0.75 Nominal shear capacity (Eq. 11-3) Vn=2 x a,x�(fo x 1 psi)x Ly x dv=247.606 kips Design shear capacity OVn=Ov x Vn= 185.705 kips Vu.x/OVn=0.003 r TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 10 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 PASS-Design shear capacity exceeds ultimate shear load Moment design,y direction, positive moment Ultimate bending moment M�,m.=2.912 kip_ft Tension reinforcement provided 28 No.6 bottom bars(6.4 in c/c) Area of tension reinforcement-provided Asy.bot.prov= 12.32 in2 Minimum area of reinforcement(10.5.4) As.min=0.0018 x L.x h=11.664 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) smax=min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-O..bot-4y.bot/2=31.875 In Depth of compression block a=Asy.bot.prov x fy/(0.85 x f.x LX) =1.208 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/R, = 1.421 in Strain in tensile reinforcement(10.3.5) et=0.003 x d/c-0.003=0.06429 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asy.bot.prov x fy x(d-a/2)= 1926.298 kip_ft Flexural strength reduction factor of=min(max(0.65+(Et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity �M;, x M,= 1733.669 kip_ft M�,m./OM,,=0.002 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,y direction One-way shear design does not apply. Shear failure plane fall outside extents of foundation. Two-way shear design at column 1 Two-way shear design does not apply.Shear perimeter falls outside extents of foundation. Two-way shear design at column 2 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Analysis and design of concrete footing Combination 6 results: 1.21D+1.01L+1.6S Forces on foundation Ultimate force in z-axis F z=yD x A x(Fs,A+ Feoii) +yD x FDz, +ys x Fsz, +yD x FD,2+7s x Fsz2= 71.0 kips Moments on foundation Ultimate moment in x-axis, about x is 0 Mu, =yD x(A x(F,,,t+ Fsoi,)x L /2) +yD x(FDz, x x,) +ys x(Fsz, x x,) +yD x(FDz2 x x2) +ys x(Fsz2 x x2) =510.3 kip_ft Ultimate moment in y-axis, about y is 0 M,,,,=yD x(A x(Fs,,,,t+ Fso;i)x Ly/2) +yD x(FDz1 x y,) +ys x(Fsz,x y,) +yD x(FDz2 x Y2)+ys x(Fsz2 x y2) = 177.4 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis euX=M,,X/F z-LX/2=-3.728 in Eccentricity of base reaction in y-axis euy=M y/F z- Ly/2=0 in Pad base pressures qu, =Fzx(1 -6xeuX/L.-6xe,y/Ly)/(L.x Ly) = 1.064ksf TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 11 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 q2= FZx(1 -6xex/Lx+6xey/Ly)/(L.xLy) =1.064ksf q 3= F 7.x(1 +6xex/Lx-6xey/Ly)/(LxxLy)=0.829ksf qi4=F7.x(1 +6xex/Lx+6xey/Ly)/(LxxLy) =0.829ksf Minimum ultimate base pressure qum;n=min(qu,,qu2,qu3,qu4) =0.829 ksf Maximum ultimate base pressure qumax= max(q,,,,q 2,q 3,q 4) = 1.064 ksf Shear diagram,x axis ®Shear(kips) 5.6 4.7 0 0 1 2.6 Moment diagram,x axis [3Moment(kip_ft) -6.2 0 as 0 .9 �'f k Shear diagram,y axis ®Shear(kips) 9.8 0 0 1 -9.8 TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 12 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 ®Moment(kip_ft) Moment diagram,y axis 0 0 12.3 Moment design,x direction, positive moment Ultimate bending moment Muxmax=5.185 kip_ft Tension reinforcement provided 9 No.6 bottom bars(6.6 in c/c) Area of tension reinforcement provided Asx.bot.Prov=3.96 in2 Minimum area of reinforcement(10.5.4) As.mm=0.0018 x Ly x h=3.888 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) sm.= min(3 x h, 18 in)= 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-yx.bot/2.=32.625 in Depth of compression block a=Asx.bot.prov x fy/(0.85 x fo x Ly) =1.165 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/(3, = 1.370 in Strain in tensile reinforcement(10.3.5) et=0.003 x d/c-0.003=0.06843 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.bot.prov x fy x(d-a/2) =634.444 klp_ft Flexural strength reduction factor 0= min(max(0.65+ (£t-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity OM,=0 x Mn=571 kip_ft Mu.x.max/Wn=0.009 PASS-Design moment capacity exceeds ultimate moment load Moment design,x direction, negative moment Ultimate bending moment M,,,x,m;n=-6.188 klp_ft Tension reinforcement provided 9 No.6 top bars(6.6 in c/c) Area of tension reinforcement provided Asx.top.prov=3.96 in2 Minimum area of reinforcement(10.5.4) As.min=0.0018 x Ly x h=3.888 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) sm.=min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-cnom-yx.top/2=32.625 in Depth of compression block a=Asx.top.prov x fy/(0.85 x fo x Ly)= 1.165 in Neutral axis factor (3, =0.85 Depth to neutral axis c=a/R, =1.370 in Strain in tensile reinforcement(10.3.5) fit=0.003 x d/c-0.003=0.06843 r TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 13 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.top.prov x fy x(d-a/2) =634.444 kip_ft Flexural strength reduction factor =min(max(0.65+ (Et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity OM,=Of x Mn=571 kip_ft abs(Wx.min)/Wn=0.011 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,x direction Ultimate shear force Vu.x=1.623 kips Depth to reinforcement dv=min(h-Cnom-yabot/2,h-Cnom-0xtep/2) =32.625 in Shear strength reduction factor $v=0.75 Nominal shear capacity(Eq. 11-3) Vn=2 x X x�(fo x 1 psi)x Ly x dv=247.606 kips Design shear capacity OVn=$v x Vn= 185.705 kips Vu.x/oVn=0.009 PASS-Design shear capacity exceeds ultimate shear load Moment design,y direction, positive moment Ultimate bending moment Mu.y,,nax=7.872 kip_ft Tension reinforcement provided 28 No.6 bottom bars(6.4 in c/c) Area of tension reinforcement provided Asy.bo,_prov= 12.32 in2 Minimum area of reinforcement(10.5.4) A,in=0.0018 x Lx x h=11.664 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) smax=min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d =h-Cnom-%.bot-gy.bot/2=31.875 In Depth of compression block a=Asy.bot.prov x fy/(0.85 x fo x Lx)= 1.208 in Neutral axis factor (3, =0.85 Depth to neutral axis c=a/Q, = 1.421 in Strain in tensile reinforcement(10.3.5) Et=0.003 x d/c-0.003=0.06429 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asy.bot.prov x fy x(d-a/2) = 1926.298 kip_ft Flexural strength reduction factor Of= min(max(0.65+(et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity 0Mn=Of x Mn= 1733.669 kip_ft Mu.y m./0Mn=0.005 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,y direction One-way shear design does not apply. Shear failure plane fall outside extents of foundation. Two-way shear design at column 1 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Two-way shear design at column 2 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. •�� TEKLA Project Job Ref. • KJWW engineering Section Sheet no./rev. 2882 106th street 14 Des Moines,IA 50322 Catc.by Date Chk'd by Date App'd by Date G 1/17/2016 Analysis and design of concrete footing Combination 9 results: 1.21D+1.6S+0.8W Forces on foundation Ultimate force in x-axis Fux=yw x Fwx1=7.6 kips Ultimate force in z-axis F Z=yD x A x(Fswt+ Fsoil) +yD x FDz1 +ys x Fs7.1 +yw x FwZ1 +yD x FDz2+YS x Fsz2+yw x Fwz2=71.0 kips Moments on foundation Ultimate moment in x-axis, about x is 0 Mux=yD x(A x(Fsm+Fsoil)x L),/2) +yD x(FDz1 x x1) +ys x(Fsz1 x xi)+yw x(Fwz,x x,+Fwx,x h) +yD x(FDz2 x x2) +ys x(Fsz2 x X2) +1fw x(Fwz2 x x2) =638.8 kip_ft Ultimate moment in y-axis, about y is 0 M y=yD x(A x(Fsm+ Fsoi,)x Ly/2) +yD x(FDZ, x y,) +ys x(Fsz,x Y,) +yw x(Fwz, x Y1) +yD x(FDz2 x Y2) +ys x(Fsz2 x y2) +yw x(Fwz2 x y2)= 177.4 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis eux=MAX/F.z-L./2= 17.997 in Eccentricity of base reaction in y-axis e y=M y/FDZ- LyJ 2=0 in Pad base pressures q1 =Fzx(1 -6xex/ Lx-6xey/Ly)/(L.xLy) =0.379ksf q2= Fzx(1 -6xex/Lx+6xey/Ly)/(L.xLy) =0.379ksf q3=Fzx(1 +6xex/L),-6xey/Ly)/(LxxLy) =1.514ksf q4=Fzx(1 +6xex/Lx+6xey/ Ly)/(L.,xLy) = 1.514ksf Minimum ultimate base pressure qumin=min(qu1,q,,2,qu3,q.4) =0.379 ksf Maximum ultimate base pressure qumax= max(qu1,qu2,qu3,qu4) = 1.514 ksf Shear diagram,x aids []Shear(kips) 8.3 0 0 3.2 -3.4 -11.1 r TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 15 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 Moment diagram,x axis Moment(kip_ft) -5.5 0 0 1gp �s w 17.3 14.8 18.3 ®Shear(kips) Shear diagram,y axis 9.8 0 0 1 -9.8 Moment diagram,y axis ®Moment(kip_ft) 0 0 "` t =*`r S 123 Moment design,x direction, positive moment Ultimate bending moment W max= 14.799 kip_ft Tension reinforcement provided 9 No.6 bottom bars(6.6 in c/c) Area of tension reinforcement provided Asxbot pro,=3.96 inz Minimum area of reinforcement(10.5.4) A,.min=0.0018 x Ly x h=3.888 inz PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) smax=min(3 x h, 18 in)= 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d=h-Cnom-4.bot/2=32.625 in Depth of compression block a=Asx.bot.p.x fy/(0.85 x fc x Ly)= 1.165 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/Q, = 1.370 in Strain in tensile reinforcement(10.3.5) et=0.003 x d/c-0.003=0.06843 TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 16 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.bot.prov x fy x(d-a/2) =634.444 kip_ft Flexural strength reduction factor =min(max(0.65+(et-0.002)x(250/3), 0.65), 0.9)=0.900 Design moment capacity OMn=0 x Mn=571 kip_ft W x.max/Wn=0.026 - PASS-Design moment capacity exceeds ultimate moment load Moment design,x direction, negative moment Ultimate bending moment Mu.x.min=-3.461 kip_ft Tension reinforcement provided 9 No.6 top bars(6.6 in c/c) Area of tension reinforcement provided Asxtop.prov=3.96 in2 Minimum area of reinforcement(10.5.4) Ae.min=0.0018 x Ly x h=3.888 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) sm.=min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d =h-Cnom-O..top/2=32.625 in Depth of compression block a=Asx.top.prov x fy/(0.85 x fo x Ly) =1.165 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/(3, = 1.370 in Strain in tensile reinforcement(10.3.5) et=0.003 x d/c 0.003=0.06843 PASS- Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asx.top.prov x fy x(d-a/2) =634.444 kip_ft Flexural strength reduction factor 0=min(max(0.65+(Et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity OMn=0 x Mn=571 kip_ft abs(M,,x.min)/OMn=0.006 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,x direction Ultimate shear force Vu.x=2.178 kips Depth to reinforcement dv=min(h Cnom-yxbot/2,h-Cnom- �x.top/2) =32.625 In Shear strength reduction factor 0,=0.75 Nominal shear capacity(Eq. 11-3) Vn=2 x X x 4(fo x 1 psi)x Ly x dv=247.606 kips Design shear capacity OVn=0,x Vn= 185.705 kips Vu.x/$Vn=0.012 PASS-Design shear capacity exceeds ultimate shear load Moment design,y direction, positive moment Ultimate bending moment M,,.max=7.872 kip_ft Tension reinforcement provided 28 No.6 bottom bars(6.4 in c/c) Area of tension reinforcement provided Asy.bot.prov= 12.32 in2 Minimum area of reinforcement(10.5.4) Ae.min=0.0018 x L.x h'- 11.664 in2 PASS-Area of reinforcement provided exceeds minimum Maximum spacing of reinforcement(15.10.4) smax=min(3 x h, 18 in) = 18 in PASS-Maximum permissible reinforcement spacing exceeds actual spacing Depth to tension reinforcement d =h-Cnom-Ox.bot-yy.bot/2=31.875 in • • • TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 17 Des Moines,IA 50322 Calc.by Date Chk'd by Date App'd by Date G 1/17/2016 Depth of compression block a=Asy.bot.prov x fy/(0.85 x f,,x Lx) = 1.208 in Neutral axis factor R, =0.85 Depth to neutral axis c=a/(3, = 1.421 in Strain in tensile reinforcement(10.3.5) Ft=0.003 x d/c-0.003=0.06429 PASS-Tensile strain exceeds minimum required, 0.004 Nominal moment capacity Mn=Asy.bot.prov x fy x(d-a/2)= 1926.298 kip_ft Flexural strength reduction factor =min(max(0.65+(Et-0.002)x(250/3), 0.65), 0.9) =0.900 Design moment capacity OM,=of x Mn= 1733.669 kip_ft Wy.max/OMn=0.005 PASS-Design moment capacity exceeds ultimate moment load One-way shear design,y direction One-way shear design does not apply. Shear failure plane fall outside extents of foundation. Two-way shear design at column 1 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Two-way shear design at column 2 Two-way shear design does not apply. Shear perimeter falls outside extents of foundation. Analysis and design of concrete footing Combination 1.2 results: 1.213+1.OL+0.5S+1.6W Forces on foundation Ultimate force in x-axis Fix=yw x Fwx, = 15.2 kips Ultimate force in z-axis Fuz=yD x A x(Fs A+ Fsoij) +yD x FDz, +ys x Fsz, +yw x Fwz, +yD x FDz2+ys x Fsz2+yw x Fwz2=61.7 kips Moments on foundation Ultimate moment in x-axis, about x is 0 Mix=yD x(A x(Fs,A+ Fsoij)x Lx/2) +yD x(FDz, x x,) +ys x(Fsz, x x,) +yw x(FwZ, xx,+Fw),, xh)+yDx(FDz2xx2) +ysx(Fsz2xx2) +ywx(Fwz2xx2) =712.4 kip_ft Ultimate moment in y-axis, about y is 0 M y=yD x(A x(F,m+ Fsoij)x Ly/2) +yD x(FDZ,x y,)+ys x(Fsz, x Y,) +yw x(FwZ,x Y,) +yD x(Fbz2 x Yz) +ys x(Fs72 x Yz) +yw x(Fwz2 x Yz) = 154.3 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis eux=M x/F Z-Lx/2=48.472 in Eccentricity of base reaction in y-axis e y= M y/F z-Ly/2=0 in Length of bearing in x-axis L'x =min(Lx,3 x(L),/2-abs(e,,x))) = 124.585 in Pad base pressures q,,, =0 kN/m2=0 ksf q 2=0 kN/m2=0 ksf qo3=2xFz/(3xLyx(L./2-eux)) =2.379ksf' qu4=2xF„z/(3xLyx(L),/2-eux))=2.379ksf Minimum ultimate base pressure qumm=min(qu,,qu2,q,,3,qu4) =0 ksf Maximum ultimate base pressure qumax=max(qu,,qu2,qu3,gL,4) =2.379 ksf Calculation Invalid-Foundation uplift occurs under column TEKLA Project Job Ref. KJWW engineering Section Sheet no./rev. 2882 106th street 18 Des Moines,IA 50322 Calc.by Data Chk'd by Date App'd by Date G 1/17/2016 Analysis and design of concrete footing Combination 15 results: 0.913+1.6W Forces on foundation Ultimate force in x-axis Fix=yW x Fwx, = 15.2 kips Ultimate force in z-axis F Z=yD x A x(F,m+Fsoil) +yD x FDZ1 + yW x FvvZ, +yD x FDZ2+yW x FVV22= 43.2 kips Moments on foundation Ultimate moment in x-axis, about x is 0 Mix=yD x(A x(FS„t+Fsoil)x L./2)+yD x(FDz1 x x1) +yW x(Fvvz,x x1+Fwx1 xh) +yDx(FD,2xx2) +Ux(Fv„Z2xx2) =579.9kip_ft Ultimate moment in y-axis, about y is 0 M y=yo x(A x(Fs,M+ Fsoil)x Ly/2) +yD x(FDZ1 x y1) +y v x(Fwzl x y1) +yD x(FDZ2 x y2)+yW x(Fv�2 x y2) = 107.9 kip_ft Eccentricity of base reaction Eccentricity of base reaction in x-axis eux=MAX/F Z- Lx/2=71.244 in Eccentricity of base reaction in y-axis e y=M y/F Z- Ly/2=0 in Length of bearing in x-axis L'x = min(Lx,3 x(L),/2-abs(eux))) =56.267 in Pad base pressures q,,, =0 kN/m2=0 ksf qU2=0 kN/m2=0 ksf q„3=2xFZ/(3xLyx(L),/2-ex)) =3.681 ksf q4=2xF„Z/(3xLyx(Lx/2-ex))=3.681 ksf Minimum ultimate base pressure qumin=min(qu1,qu2,qu3,gU4) =0 ksf Maximum ultimate base pressure qumax=max(q 1,q 2,q 3,gU4) =3.681 ksf Calculation Invalid-Foundation uplift occurs under column i 28 No.6 bottom bars(6.4 in c/c) 4 No.6 top bars(57.7 in c/c) i 9 No.6 bottom bars(6.6 in c/c) 9 No.6 top bars(6.6 in c/c) I KJWW engineering Chick-Fil-A Eng: JPG Cape Cod Date: 3/15/2016 Area)req length use o.k.? Location Reaction (sq ft) (ft) Width length area Lateral (F-2.6) 1 ROOF 115.3,21.86 19.8 6.6 3.3 0.00 no Lateral (G-2.6) 1 ROOF 128.22,21.86 4.9 1.6 0.8 0.00 no Lateral (G-3.8) 1 ROOF 128.22,30.61 8.3 2.8 1.4 0.00 no Lateral (G-5.8) 1 ROOF 128.22,52.73 6.6 2.2 1.1 0.00 no Lateral (F-5.8) 1 ROOF 115.3152.73 2.7 0.9 0.5 0.00 no Lateral (B-4) 1 ROOF 18.73,32.95 39.4 13.1 6.6 0.00 no Lateral (B-5) 1 ROOF 18.73,47.91 11.5 3.8 1.9 0.00 no Lateral (D-2) 1 ROOF 71.12,15.29 4.1 1.4 0.7 0.00 no Lateral (D-3) 1 ROOF 71.12,26.08 22.9 7.6 3.8 0.00 no (B-1) 1 ROOF 18.73,0 18.8 6.3 3.1 2.0 3.5 7.00 yes (C-2) 1 ROOF 58.8,15.29 34.0 11.3 5.7 2.0 6.0 12.00 yes (C-5) 1 ROOF 58.8,47.91 35.1 11.7 5.8 4.0 4.0 16.00 yes (E-6) 1 ROOF 93.1,53.87 21.9 7.3 3.6 2.0 4.0 8.00 yes (E-2) 1 ROOF 93.1,15.29 4.8 1.6 0.8 2.0 2.0 4.00 yes (E-3) 1 ROOF 93.1,26.08 42.8 14.3 7.1 4.0 4.0 16.00 yes (F-2) 1 ROOF 115.3,15.29 -0.8 -0.3 -0.1 2.0 2.0 4.00 yes (F-4.5) 1 ROOF 115.3,43.81 29.0 9.7 4.8 4.0 4.0 16.00 yes (G-2.2) 1 ROOF 128.22,16.43 2.4 0.8 0.4 2.0 2.0 4.00 yes (A-1) 1 ROOF 0,0 15.3 5.1 2.5 2.0 3.0 6.00 yes (A-5) 1 ROOF 0,47.91 5.2 1.7 0.9 2.0 2.0 4.00 yes (A-3.9) 1 ROOF 0,32 30.3 10.1 5.1 2.0 5.5 11.00 yes (C.2-7) 1 ROOF 60.71,55.98 2.4 0.8 0.4 2.0 2.0 4.00 yes (D-7) 1 ROOF 71.12,55.98 14.7 4.9 2.5 2.0 2.5 5.00 yes CHECK BENDING OF COLUMNS IN BACK WALL FOR WIND/CANTILEVER 20.0' WIND= (179plf)x(11.0')= 1.97k Use Risa 2D for design - Mu= 19.9k-ft 14.0' try HSS6x6x1/2''. phi-Mn= max defl =0.6" = H/240. H= 2x(6.0ft) We need to add torsional spring to beam-col connection in order to limit deflection at top of column. fully tension beam-col connection. 2 bolts, 3./4"diam. M)allow (6,33k)x(3")/12= 1.58k-ft. set rot spring to deliver this resistance at applied loads. spring constant=S250 0.0' ©� ENGINEERING i ©© CONSULTANTS Experience you can build on. Job:Chick fil-A By: ASP lJob Number: 15.0299.00 Subject:Bracing design BF1 lChecked By: Date: 12/30/2015 BOLTED KNIFE PLATE HSS BRACE FRAME CONNECTION DESIGN INFORMATION M LRFD LOADING AND OTHER INFORMATION Compression Force on Brace Cu 31 Kips Axial load on Beam Ha Beam 11 Kips For Same Load Combination for Shear on Beam Va Beam 3 Kips which Max Compression comes in brace Tension Force on Brace Tu 31 Kips Axial load on Beam Hu Beam 11 Kips For Same Load Combination in Shear on Beam Vu Beam 3 Kips which Max Tension comes in brace Brace Angle with Vertical Axis B 43.38 Degree Thickness of Connection plate t, 1/2 in Bolt used for connection db 3/.4 in Nominal Dia.Of bolt dh 7/8 in MEMBERS INFORMATION Hss Brace Member HSS4X4X1/4 Beam type Wide Flange Beam Member W10X12 Column Type HSS Column Member HSS4X4X1/4 MATERIAL INFORMATION For Hss Brace Member Fy 46 ksi Fu 58 ksi For Beam Member Fy 50 ksi Fu 65 ksi For Column Member Fy 46 ksi Fu 58 ksi Gusset plate Fy 36 ksi Fu 58 ksi Connection plate Fy 36 ksi Fu 58 ksi Bolt Grade A325-N Nominal Tensile Stress Fnt 90 Ksi Nominal Shear Stress Fnv 48 ksi DESIGN WELD FOR GUSSET AND BRACE CONNECTION Weld size 114 Weld length 1-1d 5 in Weld Strength mRn 111.36 kips OK Check Gusset thickness tmin 0.12 in OK CHECK SHEAR LAG RUPTURE OF BRACE Area of HSS brace member Ag 3.37 in' Wall thickness of HSS member Tdesign 0.23 in HSS brace Member Width B 4.00 in HSS brace Member Depth H 4.00 in Net Area An 3.08 in X 1.50 mRn 93.75 Kips OK CHECK GUSSET PLATE AT WHITMORE SECTION Gusset plate thickness tGu5Se1 1/2 in Whitmore section Width w 8 in Length of Gusset beyond the HSS brace LGuSSe, 3 in Radius of Gyration r 0.14 in Slenderness Ratio(K=1) KL/r 20.78 Elastic Critical Buckling Stress Fe 662.54 ksi Flexural Buckling Stress Fcr 35.19 ksi Tension Yielding Strength mRn 129.60 kips OK Compression buckling Strength mRn 126.69 kips OK I DISTRIBUTION OF BRACE FORCE TO BEAM AND COLUMN Distance from working point to beam connection with eb 5 in gusset Distance from working point to Column connection with e� 2 in gusset Distance from Top of beam to center of connection of R column with gusset 4.375 in Actual Distance from face of column to center of connection of beam with gusset a 5.5 in Theoretical Distance from face of column to center of a 6.86 in connection of beam with gusset r 12.90- in Horizontal force in connection with column Huc 4.81 Kips Vertical force in connection with column Vuc 10.51 Kips Horizontal force in connection with Beam Hub 16.49 Kips Vertical force in connection with Beam Vub 12.02 Kips Moment in connection with Beam due to eccentricity Mub 16.33 Kips in DESIGN GUSSET TO BEAM WELD Weld length Iweid 11.00 in Shear Stress in Weld fv 1.50 kips/in Axial Stress in Weld fa 1.09 kips/in Flexure Stress in Weld fb 0.81 kips/in fpeak 2.42 kips/in fag 1.97 kips/in D,eq 0.89 sixteenths Weld size 1/4. OK Check Gusset Plate Rupture at Beam weld tmim 0.09 OK CHECK WIDE FLANGE BEAM FOR CONCENTRATED FORCE Beam Properties dbeam 9.87 in Kdes 0.51 in tWeb 0.19 in tflange 0.21 In a<=dbeam Check Beam Web Local Yielding mRn 116.61 Kips OK Check Beam Web Crippling a>dbeam/2 Rn 141.76 Kips a<dbeam/2&N/dbeam<_0.2 Rn 70.88 Kips a<dbeam/2&N/dbeam>0.2 Rn 85.27 Kips aft106.32 Kips OK DESIGN BEAM TO COLUMN CONNECTION Hub,,m Hub Hu 5.49 kips Vubeam+Vub Vu 15.02 kips IV-;2+Huz R 15.99 kips Tan'(Hu/Vu)B 20.07 Degree number of bolt for connection n 2 Bolt Spacing S 3 in Smallest Distance of Bolt to Edge in Vertical Direction Lei top/bona 1.5 in Distance of bolt of face of column ex 2 in Coefficients From Table 7-7,AISC 13`bManual C 1.18 Shear Strength of Bolt Group mRn 18.77 Kips OK 1.2*Lci*t*Fu 76.13 kips 1.2*Lce*t*Fu 38.06 kips 2.4*d*t*Fu 52.20 kips Bearing Strength of Bolt Group mRn 46.20 kips OK CHECK CONNECTION PLATE(TO BEAM) Hub,,.-Hub Hu 5.49 kips Vub,,.+Vub Vu 15.02 kips Smallest Distance of Bolt to Edge in Horizontal Direction to 1/2 in e= 10/29 in Length of Plate Lp 11.00 in Distance of Bolt to Edge in Horizontal Direction Leh 2.00 lin Slenderness Ratio(K=0.65) KL/r 9.01 Elastic Critical Buckling Stress Fe 3528.33 ksi Flexural Buckling Stress Fcr 35.85 ksi Moment due to Eccentricity Mub 1.89 Kips in Compressive Strength of Connection Plate a)Pn 178.20 Kips Flexural Strength of Connection Plate (DMn 22.28 Kips in Unity check 0:10 Plate Thickness is fine BLOCK SHEAR Beam to column single plate connection Ubs 1.00 A,,,, 1.56 in' Age 2.00 in Ant 4.06 in UJ A t 235.63 kips 0.6*1`A,,,, 54.38 kips 0.6*F,A, 43.20 kips mR 209.12 kips Iconnection is OK . mUJuA t 31.25 kips 00.6*F,,A, 89.00 kips 00.6*F Am, 92.00 kips mR 120.25 kips Iconnection is OK Unity check(combined shear and normal block shear) 0.02 ISafe Reference AISC 13th Ed. Assumption 1.While Checking Wide flange column web yielding for concentrated force,assume that force is act at distance less than depth of member from column end,for safe side. 2.While Checking Wide flange column web crippling for concentrated force,assume that force is act at distance less than half depth of member from column end,for safe side. GRID T GLISSET PLATE= 1/2 Yp'CONNECTION PLATE 1/2 1/4 ( Lev.top'= 1.5 I o / �� BRACED FRAME STEEL COLLIMN 'LW BEAM= 1L00 Il�0 / / = H554X4X1/4 = HSS4X4X1/4 "W BEAM= t% I 1 gusset'_ nJx o 3 WP e)e_ — — — — — — — — 1/4 5 Q 1/4 5 12 1/4 11.00 'Lev.bottom'= STEEL BEAM= 1/4 11.00 1.5 W10X12 hInn'= n db NA 3/4 ©� The FUTURE. Built SMARTER." Job: By: ASP lJob Number: 15.1012.00 Subject: IChecked By: jDate7 29-Dec-15 W16X67 SHEAR TAB CONNECTION DESIGN INFORMATION AISC 13th LRFD CONNECTION INFORMATION STRESS RATIO Reaction Load Ru 46.4 kips 72.89% Beam Designation W16X67 PASS HSS Column Type NO HSS HSS ASTM Material NA Distance from face of support to bolts a 2 in Eccentricity eb 0 MATERIAL Beam steel yield stress Fy 50 ksi Beam steel ultimate stress Fu 65 ksi Connecting material yield stress Fyc 36 ksi Connecting material ultimate stress Fuc 58 ksi BOLTS A325-N Hole Type STD Bolt diameter db 3/4 in Minimum number of bolts 3 Maximum number of bolts 4 Bolt number check Number of bolts n 4 OK Plate vertical edge distance Lev,plate 1 1/2 in OK Distance from top bolt to top of cope Lev,top 1 1/2 in OK Distance from bot bolt to bot of cope Lev,bot 5.80 in OK Bolt spacing s 3 in OK End of plate to bolt line Leh 1 1/2 in OK Plate Length L 12 in COPES No Cope TOP BOTTOM Depth of cope do 1.50 0.00 in OK Length of cope Lc 4:50 0.00 lin OK PLATE Plate thickness(Maximum) tp max N/A in Plate thickness check Plate thickness tp 5/16 in OK(beam web meets limit) WELD Recomended weld size 1/4 in Weld thickness check Weld size wl 1/4 in OK SHEAR CAPACITY SUMMARY LRFD Design Calculations Bolt shear 63.6 kips GOVERNS Bolt hole bearing-Plate 97.9 kips Shear yield-Plate 81.0 kips Shear rupture—Plate 69.3 kips Block shear-Plate 67.6 kips Buckling-Plate N/A kips Flexure-Plate N/A kips Bolt hole bearing-Beam 138.6 kips Shear yielding-Beam 193.2 kips Shear rupture-Beam 147.9 kips Coped beam block shear N/A kips Coped beam flexural rupture N/A kips Coped beam web buckling N/A kips Weld shear 130.2 kips HSS Local Buckling Check NO HSS HSS Concentrated Force Check NO HSS ASSUMPTIONS/LIMITATIONS Calculation is performed using AISC 13th Ed. Calculations reference AISC 14th Ed for wide flange information Top of beam is the compression flange Weld shear based on Instantaneous Center of Rotation Plate welded to support and bolted to beam Beam can have no cope,top cope,or both top and bottom cope Bolt connection is for one vertical column of bolts Design references can be under ASD Equ or LRFD Equ 1/2"gap is assumed betweend the beam and support beam/column Weld size is equal to 5/8 plate thickness as a minimum KJWW engineering Moment End Plate Design Eng:JPG Chick-Fil-A Date: 1/7/2016 Time:8:49 AM Sheet: of Assumptions 4 bolt unstiffened extended connection Based on AISC:Steel Design Guide 4(pgs 20-23) Only one-sided connection Input Column Characteristics Beam Characteristics End Plate Charateristics 9 Col Size: W16x67 Beam Size: W14x61 plate length(in): 24 20.7 mini P� Fyo(ksi): 50 Fyb(ksi): 50 by(in): 10 10.99 max A A6 } ko(in): 1.37 Z,b(in): 102 Fyp(ksi): 36 q '` s h/tw(in): 34.4 db(in): 13.90 Fup(ksi): 58 do(in): 16.3 btb(in): 9.99 g(in): 6 OK bro(in): 10.2 ttb(in): 0.645 de(in): 2 t.o(in): 0.395 twb(in): 0.375 pro(in): 3.05 OK , tro(in): 0.665 pfi(in): 2 tP ho(in): 16.63 -,,.0,. =� Beam Forces h,(in): 10.93 Mn(k-ft): 137.6 • • V.(kips): 1 Vu @ plastic hinge(Lp) Muc(k-in): 1651.2 Calculations Bolt Design: End Plate Design: Column Flange Check: Step 1: Connection Design Moment Step 5&6: End Plate Req'&Yield Line Step 14: Col Flange Flexural Yielding Mpe(k-in): 6171 sb(in): 3.873 sc(in): 3.912 Lpb(in): 6.95 Yp: 87.6 co(in): 4.645 Step 2: See Above tp,egd(in): 0.94 Y, 97.60 Step 3&4: Trial Bolt Size&No Prying Moment tp used(in): 1 OK ttc reyd: 0.752 Stiff PI R( Bolt Type: A325 Step 7: Factored Beam Flange Force Step 15: Unstiffened Col Flange Strenl Threads Included?: Yes Ffu(kip): 124.57 d)Mor(k-in): 1942.16 Ft bolt(ksi): 90 Steps 8&9: End plate Check 1)Rn(kip): 146.52 OK Fnv(ksi): 48 Pl.Shr Yld-NRn: 194.40 OK Step 16: Local Web Yielding Strength db.1t,.gd(in): 0.752 PI.Shr Rupt-(URn: 208.80 OK Is the beam @ Ucolumn?: yes dbolt used(in): 0.875 OK Steps 10: Stiffened Plate Ct(in): 0.5 Pt(kip): 54.1 Not a stiffened connection (M if dist.Ubeam to t/col is<cb,othery Mnp(k-in): 2983.0 Step 13: Design Welds N(in): 0.65 fiMnp(k-in): 2237.3 OK beam flange to web plate: tl)Rn(kip): 107.29 Stiff PI Rf Step 11&12: Bolt Rupture&Bearing d)Rn(weld) 193.31 Step 17: Col Web Buckling Bit Shr Rupt: 4)Rn: 86.59 OK Lweid(in): 19.61 h(in): 13.59 L,(in): 4.76 Dreq(1/16"): 5 Is t/beam>de/2 from Ucol?: no Bolt Bearing: q)Rn(nneo: 121.8 k/bolt beam web to web plate: q)Rn(kip): 58.99 Stiff PI R( 4)Rn(outer) 121.8 k/bolt Dreq(1/16"): 5 Step 18: Col Web Crippling Plate:?Rn,to,e flip): 365.4 OK 'See AISC:Design Guide 4 fig 2.10 on N/do: 0.040 Col Flange:)Rn,tstel(kip): 174.95 OK pg 18 for welds of Beam to End Plate +Rn(kip): 77.11 Stiff PI Rf Step 19: Stiffener Design Force F,,(kip): 65.59 Mom Endplates-frame connection.xls IIB-2 Example 113-1 Bolted Flange-Plate FIR Moment Connection (beam-to-column flange) Given: Design a bolted flange-plated FR moment connection between a'W16x67 beam and a Wt4x61 column flange to transfer the following forces: RD=11 kips MD=22 kip-ft RL=20.73 kips ML=73.5 kip-ft Use 3/4"..diameter ASTM A325-N bolts in standard holes and E70 electrodes. i Shim top or bottom (8)3/4^ Dia.A325-N as required bolts(gage=4") IENWx 1'-OY2 (3) -4"Dia.A325-N bolts y y X W16x67 IE%x4xO'-9 li!3/ax7x1'-Oh (8)3/4"Dia.A325-N y bolts(gage=4") Ya Check column for stiffening requirements Material Properties: Beam W16x67 ASTM A992 Fy=50 ksi FU=65 ksi Manual Column W1441 ASTM A992 Fy=50 ksi F =65 ksi Table 2-2 Plate ASTM A36 Fy=36 ksi F"= 58 ksi Table 2-3 Geometric Properties: Beam W16x67 d=16.3 in. bf= 10.2 in. tf=0.665 in. t„,=0.395 in. S,Y= 117 Manual in.3 Table 1-1 Column W14x61 , d= 13.9 in. bf= 10.0 in. tf=0.645 in. r t II13-3 Solution: LRFD R =1.2 11 kips)+1.6(20.73 kips =46.37 kips M =1.2 22 kip-ft)+1.6(73.5 kip-ft) =144 . kip-ft Check the beam available flexural strength Assume two rows of bolts in standard holes. Afg =b ft f =(10.2 in)(0.665 in) _.6.8 in? Section F13.1 Afn =Af8—2(db+Y. in.)t f = 6.8 in.Z—2(3/4 in+1/2 in)(0.665)=5.64 in.Z F = 50 ksi =0.769<0.8,therefore Y,= 1.0. F� 65 ksi F A fn =(65 ksi)(5.64 in.' =366 kips Y,F,Afg =(1.0)(50 ksi)(6.8 in.2)=340 kips<366 kips Tensile rapture does not apply F13.1 Design single-plate web connection Try a PL 3/8x4x0'-9,with three 3/4"1.diameter ASTM A325-N bolts and 1/4-in.fillet welds. , IIB-4 LRFD Design shear strength of the bolts Manual Table 7-1 Single shear; Or,=15.9 kips/bolt 46.37 kips,/(15.9 kips/bolt)= 2.7 bolts Bearing strength of bolts Manual Table 7-5 Bolt spacing=3 in. Or,=(78.3 kips/in./bolt)(%in.) =29.4 kips/bolt 46.37 kips/(29.4 kips/bolt)= 1.57 bolts Plate shear yielding 0= 1.00 OR,=0.60�Fy A, Eqn J4-3 =0.60(1.00)(36 ksi)(9 in.)(3/8 in.) =72.9 kips>46 37kips o.k. Plate shear rupture Where 0=0.75 OR,=0.60 OF,,An, Eqn J4-4 (3 bolts)1dm in.+V116 in.+ 1/16 in.)=2.63 in A„,_(9 in.—2.63..)(3/8 in.)= 6.37; in =0.60(0.75)(58 ksi)(:6.37 in2) = 166 kips>46.37 kips o.k. Block shear rupture strength of the plate Len= 11/4 in.;Le = 11/2 in.; Ub,= 1.0;n=3 LRFD OR,, =OF A„,Ub, +min(O0.6Fy,A,,,, �FuAn,) Tension rupture component Manual Table 9-3a OFuA„1=,35.3 kips/in(3/e in) t G IIB-5 Shear yielding component Manual Table 9-3b r 0.60FyAg,= 121 kips/in(3/e in) Shear rupture component Manual Table 9-3c 0.60F A„,= 139 kips/in(3/s in) �R„=(121 kips/in+ 35.3 kips/in)(3/a in) = .56.61 kips>46.37 kips o.k. Weld Strength Manual Part 8 �R„= 1.392D l(2) = 1.392(4 sixteenths)(9 in.)(2) = 100 kips>46.3 kips o.k. Connecting Elements Rupture Strength at Welds Shear rupture strength of base metal 0.6F,,,(12 I(DJ Section J4.2 2 J 16 _3.09D tmi° — 0.6Fu Fu Column flange; tf= 0.645 in. 3.09D (3.09)(4 sixteenths)— tm;n _ _ —0.190 in. Fu 65 ksi Plate; t=3/s in. 3.09(2)D i(3.09x2x4 sixteenths) tm _ _Fu 1 58 ksi =0.427 in.>3/8 in. proration required. Refer Knife plate connection Gals f ©� The FUTURE. Built SMARTER.' Job: I B : ASP Job Number: 15.1012.00 Subject: lChecked By: Date: 29-Dec-15 W16X67 SHEAR TAB CONNECTION DESIGN INFORMATION AISC 13th LRFD CONNECTION INFORMATION STRESS RATIO Reaction Load Ru 46.4 kips 72.89% Beare Designation W16X6777 PASS HSS Column Type NO HSS HSS ASTM Material NA Distance from face of support to bolts a 2 in Eccentricity eb 0 MATERIAL Beam steel yield stress Fy 50 ksi Beam steel ultimate stress Fu 65 ksi Connecting material yield stress Fyc 36 ksi Connecting material ultimate stress Fuc 58 ksi BOLTS A325-N Hole Type STD Bolt diameter db 314 in Minimum number of bolts 3 Maximum number of bolts 4 Bolt number check Number of bolts n 4 OK Plate vertical edge distance Lev,plate 1 1/2 in OK Distance from top bolt to top of cope Lev,top 1 1/2 in OK Distance from bot bolt to bot of cope Lev,bot 5.80 in OK Bolt spacing s 3 in OK End of plate to bolt line Leh 1 1/2 in OK Plate Length L 12 in COPES No Co e TOP BOTTOM Depth of cope do 1.50 0.00 in OK Length of cope Lc 4.50 0.00 in OK PLATE Plate thickness(Maximum) tp max N/A in Plate thickness check Plate thickness tp 5/16 in OK(beam web meets limit) WELD Recomended weld size 1/4 in Weld thickness check Weld size wl 1/4 in OK SHEAR CAPACITY SUMMARY LRFD Design Calculations Bolt shear 63.6 kips GOVERNS Bolt hole bearing-Plate 97.9 kips Shear yield-Plate 81.0 kips Shear rupture-Plate 69.3 kips Block shear-Plate 67.6 kips Buckling-Plate N/A kips Flexure-Plate N/A kips Bolt hole bearing-Beam 138.6 kips Shear yielding-Beam 193.2 kips Shear rupture-Beam 147.9 kips Coped beam block shear N/A kips Coped beam flexural rupture N/A kips Coped beam web buckling N/A kips Weld shear 130.2 kips HSS Local Buckling Check NO HSS HSS Concentrated Force Check NO HSS ASSUMPTIONS/LIMITATIONS Calculation is performed using AISC 13th Ed. Calculations reference AISC 14th Ed for wide flange information Top of beam is the compression flange Weld shear based on Instantaneous Center of Rotation Plate welded to support and bolted to beam Beam can have no cope,top cope,or both top and bottom cope Bolt connection is for one vertical column of bolts Design references can be under ASD Equ or LRFD Equ 1/2"gap is assumed betweend the beam and support beam/column Weld size is equal to 5/8 plate thickness as a minimum IIB-6 Design tension flange plate and connection Design of bolts LRFD M 144 kip-ft)(12 in./ft) _ Manual _ u _ ; P°f d 16.3 in. 1 cps Part 12 Try aPL3/ax7 Determine critical bolt strength For shear, r� = 11.1 kips/bolt using 7/8"diam A325SC bolts in ssl Manual Table 7-1 holes For bearing on flange; �r =(87.8 kips/bolt)t f =(87.8kips/bolt)(0.665 in.) =HA kips/bolt Manual Table 7-6 For bearing in plate; �ru =(78.3 kipsibolt)tf =(78.3 kips/bolt(0.665 in.) =.52 kips/bolt Shear controls,therefore the number of bolts required is as follows: nmN _ Puf _ 106 kips =695 bolts 11.1 kips/bolt 4 Use 00 -.bolts. Check flange plate tension yielding P =F Ag =(36 ksi)(7 in.)(3, in.)=189 kips Eqn.132-1 LRFD Mu _ 144 kip-ft)(12 in./ft) P f d+t p (16.3 in.+ Y, in.) =101 kips =0.90 ,. IIB-7 �P„ =0.90(189 kips)=170 kips 170 ki s>101 kips o.k. Check flange plate tension rupture A„<_0.85 Ag=0.85(7 in.)(0.75 in.)=4.46 in Eqn.J4-1 A„ _[B—2(db+y in.)]tp =[(7 in.)-2 3A in.+ 'g in.)](34 in.)=3.94 in? Ae =3.94 in z P„ =FAe =(58 ksi)(3.94 in.2)=228 kips Eqn.D2-2 LRFD =0.75 �P„ =0.75(228 kips)=171 kips 171 kips>101 kips o.k. Check flange plate block shear rupture There are two cases for which block shear rupture must be checked.The first case involves the tearout of the two blocks outside the two rows of bolt holes in the flange plate; for this case Leh = 11/2 in. and Lev = 11/2 in. The second case involves the tearout of the block between the two rows of the holes in the flange plate. Manual Tables 9-3a, 9-3b, and 9-3c may be adapted for this calculation by considering the 4 in.width to be comprised of two,2-in.wide blocks where Leti=2 in.and Lev= 1'/2 in.Thus,the former case is the more critical. LRFD Manual ORn =OFu A„t6s U +min(00.6Fy Agv, OFu A„v) Table 9-3a Manual Table 9-3b Tension component OUn,F„A4, =46.2 kips (34 in.)(2) Manual Shear yielding component Table 9-3c 00.6FyAgv =170 kips (% in.)(2) Shear rupture component 00.6F A„, = 194 kips (34 in.)(2) Shear yielding controls,thus OR„ =(170 kips+•46.2 kips)(34 in.)(2) =239 kips>101 kips o.k. i. IIB-8 Determine the required size of the fillet weld to supporting column flange The applied tension load is perpendicular to the weld, Eqns.J2-4, therefore 0=90'and 1.0+0.5 sin15 0=1.5. and J2-5 LRFD D Pf m1n 2(1.5)(1.392)l _ 101 kips 2(1.5)(1.392)(7 in.) =3.5 sixteenths Usi 1/4-in.fillet welds,4>3.5 o.k. Connecting Elements Rupture Strength at Welds Tension rupture strength of base metal 0.6FE 1 rDl 2 16 1.86D train — — F F. Column flange; tJ=0.645 in. 1.86D (1.86)(4 sixteenths) tin = _ —0.114 in. F. 65 ksi Flange plate; tJ=0.75 in. _3.71D (1.86)(2)(4 sixteenths ) =0.257 in. train Fu 58 ksi Design compression flange plate and connection Try PL 3/4x7 Assume K=0.65 and l=2.0 in.(11/2 in.edge distance and in.setback). Kl 0.65(2.0 in.) —_ =6.00<25 r % in. 12 Therefore,F,,=Fy Section J4.3 A=(7 in.)(34 in.)=5.25 in.2 r IIB-9 LRFD =0.90 OP =OF,,Ag =0.90(36 ksi)(5.25 in.Z) Eqn.J4-6 =170 kips>101 kips o.k. The compression flange plate will be identical to the tension flange plate; a 3/4 in.x7 in. plate with eight bolts in two rows of four bolts on a 4 in. gage and 1/4 in. fillet welds to the supporting column flange. Note: Tension due to load reversal must also be considered in the design of the fillet weld to the supporting column flange. The column must be checked for stiffening requirements. For further information, see AISC Design Guide No. 13 Wide-Flange Column Stiffening at Moment Connections — Wind and Seismic Applications (Carter, 1999). FULL PEN PL3f4'CAP PLATE EACH FLANGE T//STEEL EL(REF PLAN) 0i 10 O� I i0 Oi I iO Oi O O' 'O STEEL BEAM-REF PLAN (TYPICAL) I 314'x(bf+Y)x 1'-T I STEEL COLUMN- STIFFENER/CONNECTOR REF PLAN PLATE I (6)3/4"A325 -TYPE X BOLTS NOTES: 1. DETAIL SIMILAR FOR MOMENT CONNECTION OF BEAMS IN OPPOSITE DIRECTION. ENGINEERING TYPICAL ROOF MOMENT CONNECTION r� C G N S U I TA NTR IMOMENT04 r ENGINEERING CONSULTANTS Experience you can build on.* PROJECT Chick fil-A DATE BY PROJECT NO. 12/30/15 ASP 15.1012.00 T-Y P GRID1/4 1/2"STIFFENER PLATE EACH SIDE STEEL BEAM- REF PLAN T/STEEL i EL(REF PLAN) Mu=13 :6 kip-ft i r2 2 2"r 2" ill I _ W16x67 rFh i W14x61 STEEL COLUMN- REFP Li -J- -SEA, -m, _ # COIF-fV ECT1 + D TP�F u=137.6 kip-ft see .o..e. en.dplate-sp, adsh.ee N i I I I � rvl _—_—_ _—_—_— I I I E I 1 i I I I I I 1 o I - I I I I I ----- o I i I (' L_J L_J L_J 11 U _ __—_—_—_—_ I -------------------------------- I 1-� I 1 I I I I I . I ------------- I � I o � 1 I I O rF --------------------- I ---' 0 0, PROJECT NAME: t [ j s tC? - c ADDRESS: 1�d PERMIT# PERMIT DATE: �� C,t' M/P• LARGE PLANS ARE FILED IN: BANKERS BOX FILED ALPHABETICALY BY STREET INFORMATION, SHEET FILED IN STREET FILE q/wpfiles/forms/archive/BANKERSBOX _ LANDSCAPE SCHEDULE I KEY QTY� BOTANICAL NAME COMMON NAME SIZE REMARKS SHADE TREE(S) \ ' ARA 15 ACER RUBRUM'ARMSTRONG' ARMSTRONG COLUMNAR RED MAPLE 3"CAL. B+B AROG 10 ACER RUBRUM'OCTOBER GLORY' OCTOBER GLORY RED MAPLE 3"CAL. B+B LSR 4 LIQUIDAMBAR STYRACIFLUA ROTUNDILOBA' SEEDLESS SWEETGUM 3"CAL. B+B ( PR`I�P�C� QP 6 QUERCUS PALUSTRIS PIN OAK 3"CAL B+B 5 KLE \ SUBTOTAL: 35 6 AU ' `\ EVERGREEN TREE(S) - ~} -PROP.HYDROSEED LAWN JV 7 JUNIPERUS VIRGINIANA EASTERN RED CEDAR 8-10, B+B 5 SSTB '. ------ --- -- ---- ...--- ' -7 AROG OVER 6"TOPSOIL(TYP.) TOE 20 THUJA'GREEN GIANT' GREEN GIANT ARBORVITAE 8-10' B+B -- - — - ------ — - -------1 — Atlanta Ceorpq JOJ49-2998 5KLE SUBTOTAL: 27 •. -------------- ----- ' i 2 VTC DECIDUOUS SHRUB(S) I 1 4 KLE 20 TOE CAR 11 CLETHRA ALNIFOLIA'ROSEA' PINK SUMMERSWEET CLETHRA 24-30" #3 CAN 1 \ 2 VTC 2 AROG IVWR 9 ILEX VERTICILLATA'WINTER RED' WINTER RED WINTERBERRY HOLLY 30-36" #5 CAN - ' MP 46 MYRICA PENSYLVANIGA NORTHERN BAYBERRY 30-36" B+B 4 KLE PFGD 69 POTENTILLA FRUTICOSA'GOLD DROP' GOLD DROP CINQUEFOIL 15-18" #3 CAN REVISIONS 4 KLE 1 AROG - . � C � . PMA 50 PRUNUS MARITIMA BEACH PLUM 3'-4' 2 VT 8+g # DATE COMMENT BY • 3 KLE- VTC 14 VIBURNUM TRILOBUM'COMPACTUM' COMPACT AMERICAN CRANBERRYBUSH 24-30" B+B r-- FJ+ \\ ,:: ••:: PROP.3"LAYER OF DOUBLE RASi O SUBTOTAL: 199 INITIAL SP REVIEW I O 1 9/15/15 COMMENTS JNF SHREDDED HARDWOOD BARK EVERGREEN SHRUB(S) 2 10/22/15 GMP MEETING JNF I MULCH OVER WATER PERMEABLE "'; �' -- — COMMENTS WEED BARRIER FABRIC IN ALL IGS 138 ILEX GLABRA'SHAMROCK' SHAMROCK INKBERRY HOLLY 24-30" #5 CAN ZBA&VHB V/ 3 12/2/15 JNF PLANTING BEDS(TYP.) FJ{ KLE 52 KALMIA LATIFOLIA'ELF' ELF MOUNTAIN LAUREL 24-30" B+B COMMENTS UTILITY -� - -- - - ADD LANDSCAPE GW i'� � • ' SUBTOTAL: 190 4 12/17/15_ SCREENING J - -- ------ ---- -- - - 5 4/12116 COMMENTS PRR j GROUND COVER(S) - fi 2 VTC I 3PMA 51GS \ �' �' AU 38 ARCTOSTAPHYLOS UVA-URSI BEARBERRY - 12-15" - #2 CAN REVISED f 5 MP -7 PVS 6 5/20/16 DUMPSTER PRR y' JHBH 96 JUNIPERUS HORIZONTALIS BAR HARBOR' BAR HARBOR CREEPING JUNIPER 15-18"SPRD. #3 CAN 8 PMA --- _�._ I 6 JHBH 7 9/9116 REVISED CASH JNF PROP.HYDROSEED LAWN ::. 4 VTC -14 SSTB SUBTOTAL. 1 STATION WALK 34 OVER 6•TOPSOIL(TYP.) O G ---- --- ------- - _.__...--- -_-- REVISED CASH • �r ORNAMENTAL GRASS(ES) 9 JHBH _ _ _ 8 10/13/16 JNF • STATION WALK PVS PROP.3"LAYER OF DOUBLE 27 PANICUM VIRGATUM'SHENANDOAH' SHENANDOAH SWITCH GRASS 2 GAL. CONTAINER 3 IGS � � � -- - ----- -- 'f ,� SHREDDED HARDWOOD BARK 9 �r 4 MP �-y ,W SSTB 110 SCHIZACHYRIUM SCOPARIUM'THE BLUES' LITTLE BLUE STEM 2 GAL. CONTAINER • MULCH OVER WATER PERMEABLE __ �dJ r + r O -1 LSR PLANTING BEDS(TYP.) - _ --- - ...-- --- WEED BARRIER FABRIC IN ALL suaroTAL 137 10 0* 0 tI-c�i 3 KLE s' F-8 JHBH 2 OP VILLAGE OF HYANNIIS L.,A�,DSCAPE RE"'UIREMENTS 12 k w t . I 17 IGS 6 SSTB - - Lij SECTION OF BY-LAW DESCRIPTION REQUIRED PROPOSED 13 j i �2 �. , _,.'�•:•;,',; 240-25 E THE FRONT YARD LANDSCAPED SETBACK SHALL BE LANDSCAPED WITH A t� O :•, .. , . COMBINATION OF GRASSES,TREES AND SHRUBS COMMONLY FOUND ON CAPE COD, 14 3 PFGD �. � .� . .: ...:.:.:...•:. y( it =�- � A MINIMUM OF ONE STREET TREE WITH A MINIMUM CALIPER OF 3"SHALL BE g KLE: :;.;.;:..;....•,, l -- 3LSR ��1111 flll PROVIDED PER 30 FEET OF ROAD FRONTAGE DISTRIBUTED THROUGHOUT THE �� t FRONT YARD SETBACK AREA. a 3 IVbUR- 10 PVS , }} 1 TREE PR Q I I 235.6 LF E 0308 TREESRONTAGE IN FRONT YARD 8 TREES 18 TREES 9 �c ' • -6 SSTB . .---- --- --- _d 3 PFGD 4 IGS 240-39 J(3)(b) LANDSCAPING SHALL BE PROVIDED AT A RATE OF ONE TREE OF 3"CAL.PER EIGHT 3 JHBH SPACES,AND SUCH TREES SHALL BE LOCATED WITHIN THE PARKING AREA. r �( T. ,CAPE A �' CT • �` ,w 6 JHBH I 1 TREE PER 8 SPACES LOCATED WITHIN PARKING AREA j I 62 SPACES/8=8 TREES 8 TREES 12 TREES $10 3KLE-_�._ : � --'-2MP � N i 1os Y R 3 PMA 2 PMA o co � No 1359 1 SUCH PARKING AREA LANDSCAPING AREAS SHALL CONSTITUTE NOTE LESS THAN 5/o 3 PFGD- 1 JHBH __4 MP ( 2 OP OF THE LAND AREA DEVOTED TO GRADE-LEVEL PARKING FIELDS. + _ 25,957 SF PARKING AREA x 0.05=1,298 SF LANDSCAPING AREAS 1,298 SF 1.604 SF 5 s t , •' It 3 IVWR ` 3 JHBH 5.;s =G o �I _ 24 IGS 3 JHBH 5 SSTB 3 JHBH 6 SSTB w �3PFGD l, _ — Z 51GS 'A x -� 7 SST3WO 1z a t FER o°.° _ --.--- A _ z° a a a� g .1 i 3 KLE _ .. , p; -----�----- -� F PROP.3"LAYER OF DOUBLE i o / _ _ « = �--�'' SHREDDED HARDWOOD BARK ° , *_0� _ 3 PFGD , a•°o Ma c c9 5 o- �° P , MULCH OVER WATER PERMEABLE �4 f e W= cox j 50 ow �` 5 MP -4 JHBH 6 SSTB (-4 JHBH 5 JHBH D BARRIER FABRIC IN ALL _i yl. O xm�x • PLANTING BEDS(TYP.) NEE F IC �4 aJ•°�mN s + S08H MODIFIED ,x •••• , N-L-TWIST �a 3 iVWR - ±5,493 S.F. r , W o a n 1181NSiDE SEATS F' 1 30 OUTSIDE SEATS I 3 ARA QQ '..�� U7 � 2 J2YYy ' VVV 3 PFGD 3PMA , 4 JHBH f .4XL-� � ' ,/� ��� m3N333 �� l FFE=47.50 a w o w w w �� � 1 OP-� ` -��' a'� :3zmzzz �,z ♦♦♦a.4♦ < 3 KLE :;' ' 3 JHBH- z I ' `r, f O 3 VTC; 4 JV 3 PFGD `I 1�;J 61G _ B O H L E R 3 JV I� 51GS EN (3INEEkING f 4 KLE- 3 PMA Q WV 1 352 TURNPIKE ROAD i 1 ' SOUTHBOROUGH,MA 01772 � I Phone: (508)480-9900 Fax: (508)480-9080 8 ARA www.Boh1erEngineeringL2 (711::.. ,. 0 11 \ 4 CAR II \ I HEREBY CERTIFY THAT THESE PLANS 4 PMA - HAVE BEEN PREPARED UNDER MY PROP.HYDROSEED LAWN [i 51GS ` SUPERVISION AND THAT TO THE BEST OVER 6•TOPSOIL(TYP.) 1 /' 5 MP I I SSTB OF MY KNOWLEDGE,THE SAME 77 1 STORY COMPLY WITH ALL RULES, 8 PVS WOOD FRAME REGULATIONS A S ANDMA ORDINANCES TO OF 7 JHBH 5 JHBH - BUILDING IGS 131GS . STRUCTURES AND BUILDINGS. 6 JHBH STORE #03545 0 6SSTB S08H-MODIFIED-N-L } - 1 OF f 104 ENTERPRISE ROAD _ 'a:• 11 IGS 0 _ _ _ �?CAR;< . •. PROP.HYDROSEED LAWN VILLAGE OF HYANNIS 12 AU OVER 6"TOPSOIL(TYP.) BARNSTABLE COUNTY A A H ETTS 3 PMA . MSSCUS • . :t7p - MAP #294, LOT#18,19,23 �1 •, °' �__• . 9 IGS-• \.t � 3,PVs: ( 9 PFGD --3 JH9H \. SHEET TITLE C 3 VTC 7 AU 61GS`. 4 PMA + Q 4 ARA + .• 3 PMA _1 EEC 1 E PR LTAVOID- LANDSCAPE DSCAPE CONTACT WITH H EMERGENCY 6 PFGD T PIeAI� ilMBfi. 11 MP-r- , O '6S8B VEHICLES.5 PFGD -0 a i :s�sTB. 0 , VS. MAINTENANCE CAE A 23 SSTBS - �I L CIJEs1II''I`E DINE ALONE EDGE IC ;. VERSION: 02.4 4 Al, _-- 11 PFGD `- T ' . I �.. — — -- — ' �=-•=.� :.. �� - _ -_.—__ _ _ _.:_._._ -- — :T .-,-_•,.�::,�::..:�;=:'}-�::�-- ROADS A1�I� INTERSECTIONS �� ......;.. : :, .... .: a�. .. U W141096 TFIE RESPONSIBILITY OF THE Job No, -- �� CRASS AREA PROPERTY 'OWNER Store 03545 — PROP.HYDROSEED LAWN 2/12/16 ���..�. IYANNOYUG HI R®AD PROP.3"LAYER OF DOUBLE 1 C OVER 6"TOPSOIL(TYP.) \hN Date SHREDDED HARDWOOD BARK (A.K.A.ROUTE 132] __.. ----- -- - """--- Drawn By CFD/JNF MULCH OVER WATER PERMEABLE ' - WV (PUBLIC 95 WIDE) -- - - WEED BARRIER FABRIC IN ALL �I �IIS PLAN TO ICE ILILEI� °�C1R Checked By JGS a O- k. PLANTING BEDS(TYP.) LAND�CAPE PU RPOSES ONLY - Sheet ll r-I Sf' 20 10 5 0 20 �C��� �t1 T�r� 1 .0 1"= 20 , f ' ,�.\ \ � I •i NOVOti 2 � LOCUS �' 1 --' ✓- o oo' CB/CENTER ;: LOT COVERAGE: HQ DISTRICT I / 6 FOUND �'I ZONING 0 2 EXISTING REQUIREMENT10 J� BY STRUCTURES 7.5% 30% `ray 00' C tN B/CENTER �r 1 1a. LEASE AREA 75, 9 a I0 op C FOUND 1� 946 S.F. 40,000 S.F. ,� LO 'MR ,QAs MAP 294 LOT 022 5�8 N/F CA OD INDEPENDENCE PARK INC ��' Z MALL DETAIL NOT TO SCALE 1 � p CB/DISK \ N D ._ _ . . e - euslNEss asn�ICT ._ LOCUS M A P HB - HIGHWAY BUSINESS DISTRICT NOT TO SCALE r 1 CB/DISK \ NOTES r l I FOUND I �3 \ 1. ASSESSOR'S NUMBER: MAP 294, LOTS 18, 19 & 23 2. ZONING DISTRICT: HIGHWAY BUSINESS SHOPPING CENTER REDEVELOPMENT OVERLAY DISTRICT I RE��NpE & DRIVE THROUGH RESTAURANT SUB ZONE OF SCROD AP>'ROY. POND % \ J GROUNDWATER PROTECTION OVERLAY DISTRICT LOCATION' 1 l �,`' o ( ( Z 3. FLOOD HAZARD ZONES: X 4. BENCHMARK:CATCH BASINS AS SHOWN 5 TOPOALTAGACSMIC INFORMATION PILED FROM LAND TITLE SURVEY o ' BO 'ram \ \ PREPARED FOR: CHICK-FIL-A � - - / w _ REVISION DATE: 9 25 15 MAP 294 LOT 023 l!;!' CONTROL POINT ASSOCIATES, INC. SPPRO,\IPf.are 50-FT [L t� I LEASE AREA N/F PREPARED BY: {WETLAND �v`f"E ' ARE BASED ON THE a f 1 I 75,946 SQ.FT. \ \ MAYFLOWER CAPE COD LLC 6 NATIONAL GEODETIELEVATIONS C VERTICAL DATUM OF 1929 � w 1W� I (1 .74 ACRES) v LOT 10 7. WIND EXPOSURE CATEGORY: B 8. THIS SITE IS NOT LOCATED WITHIN THE WIND BORNE DEBRIS REGION CB/DISK � ' 1 I \ 9. REFERENCE: LAND COURT PLANS 13216 E & I FOUND "t I 2.0; 2.2' `-APPfO,Y. P�. TL4ND LINE- i ; o 28.9 1.7 2.7' \ \ 40 cv 5.0 3.7' `\ EP6EM�N1 t ' 3 14.7' 1.6' �� �'� MAP 294 LOT 026 5.0' 0.5' \r V N/F 3'7 NEWMARKET PLACE LP 41 �, 5 / APPROY,'.��TE 1 o9-FTFER � I t t w Z /J I CERTIFY THAT THE FOUNDATION IS l� NG FOUNDATION \ LOCATED IN FLOOD PLAIN ZONE X AS � EXISTING SHOWN ON IFLOOD INSURANCE RATE MA P 1 ` BUILDING UNDER CB/DISKS \ COMMUNITY PANEL NO. 25001 CO566J FOUND " ;' i ;( '� 1.7' CONSTRUCTION 2.5,, _ yy�J I CERTIFY THAT THE FOUNDATION AND THAT FLOOD PLAIN ZONE X AL FLOOD HAZARD AREA.IS NOT \ IS LOCATED ON THE LOT AS SHOWN. A SPEC � - 1,0 7 0)(Al4 TE I,'t GET,4 TFO \0.7' o0 \ 4,��c�,y� Tn�FaT!,'ENT r,-ram REBAR/CAP '' ' CBASIN 6 8' 2.5' FOUND _ HOLMES AND McGRATH, INC. HOLMES AND McGRATH, INC. N R=45.53 5.0' 3.1' 2.5' 0.5 0.7' \ _ � r ! � ® ' 4.0' f \ \ REBAR/CAP �j So vNG ✓ Zalo � ' I 2.2 .7' 0.7' \ FOUND 80 6� �1"E J R. KUBICK L R. KUBICK egistered Professional Date Registered Professional Date \ Land Surveyor Land Surveyor STORY N/F MAP 294 LOT 018 ' \ / � -106.6'`y 1 / I j -- W000 FRAME CAPE COD MALL LLC I ( � 1.2' � -- \ I Q, 15.2' BUILDING I f`" - o \ r I rs t•, ' I M I N I II N 1.2' J \ BUILDING DEpT I Q MAP 294 LOT 019 ` 1 MAP 294 LOT 018 W ,J(fN Q6 N/F 50.5' N/F MAYFLOWER CAPE COD LLC Z MAP 294 LOT 025 +Xnil1 2016 CAPE COD MALL LLC \ N, N,/FS� A=aA� I 1 o N\\ 955 IYANNOUGH RD LLC CBASIN R-45.26 I ( \ \ CA,r CB/CENTER I I I ® \ 0. N FOUND r ' CB/DISK I FOUND NOTICE I I \ / v I Unless and until such time as the original (red) stamp of the I 00 1 responsible Professional Engineer, or Professional Land Surveyor appears on this plan: % I I \ (A) no person or persons, including any municipal or other public officials, may rely upon the information contained herein; and (B) this plan remains the property of Holmes & McGrath, Inc. CB/DISK I FOUND DATE DESCRIPTION jDrawn hecked 38.58' 70.80' _ 86.42' , _ _ _ _ R E V I S 1 0 N S 195.80' S60' 13' 01"E 0 0 _--- ---- --- ------- --- --- -- -- - PLOT PLAN -- 1 IYANNOUGH ROAD _ a32) _- -----_--_------- SHOWING EXISTING FOUNDATION(A.K.A. RouTE _ PREPARED FOR - (PUBLIC-95'WIDE) D.F. PRAY, INC. FOR #104 ENTERPRISE ROAD IN BARNSTABLE : y - ice.;; - HYANNIS MA. _ SCALE: 1" = 20' GRAPHIC SCALE DATE: MAY 27, 2016 --- _ ------------ --- -- -- --- -- ---- ----------- ,o 0 20 so holmes and megrath, inc. 20 civil engineers and land surveyors j 205 worcester court suite A4 508 548-3564 (PHONE) � I ( IN FEET falmouth, ma. 02540 508 548-9672 (FAX ------ ------- -- - - 1 inch = 20 ft~ --_I -- ----------- --- DRAWN: RLR CHECKED: J �� `� / N:\D\DFPRAY\216093\DWG\216093`'v .DWO JOB NO: 216090 DWG. NO.: 88-6-11